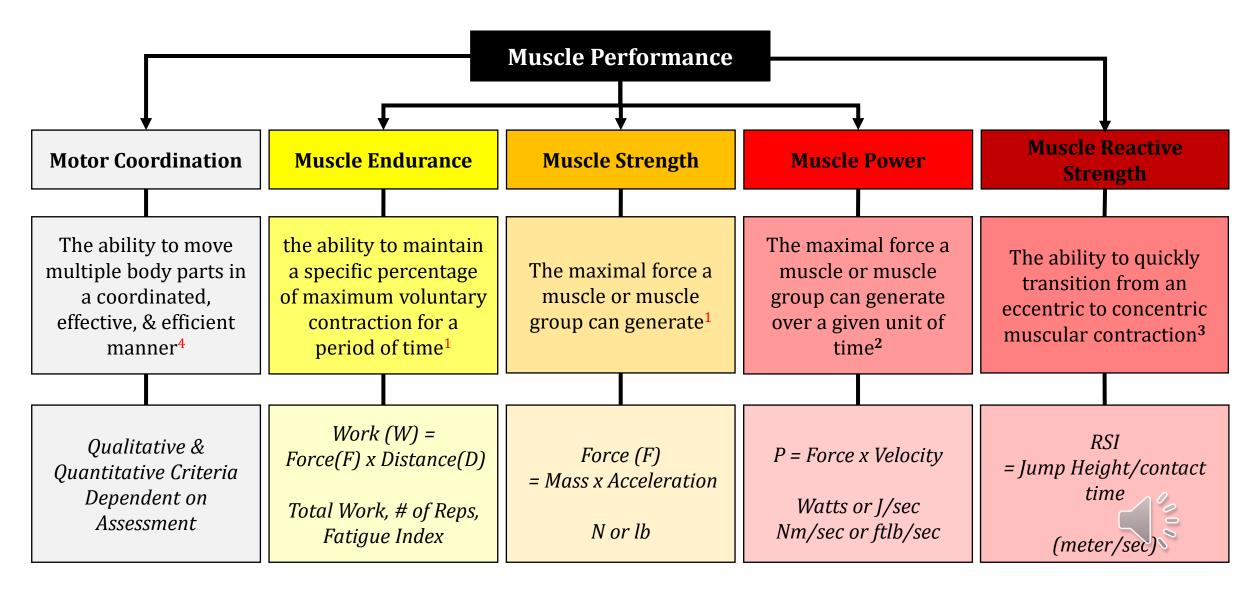
Stop the Guessing Game:

Implementing a Criterion and Evidence-Based Functional Performance

Testing Algorithm in Foot and Ankle Injuries



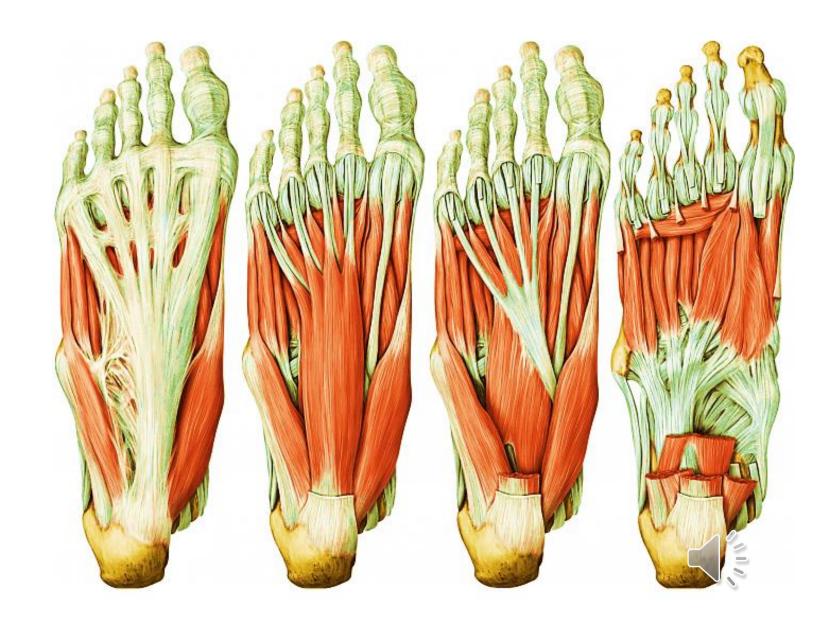
Michael Jeanfavre PT, DPT, FAAOMPT, SCS, OCS

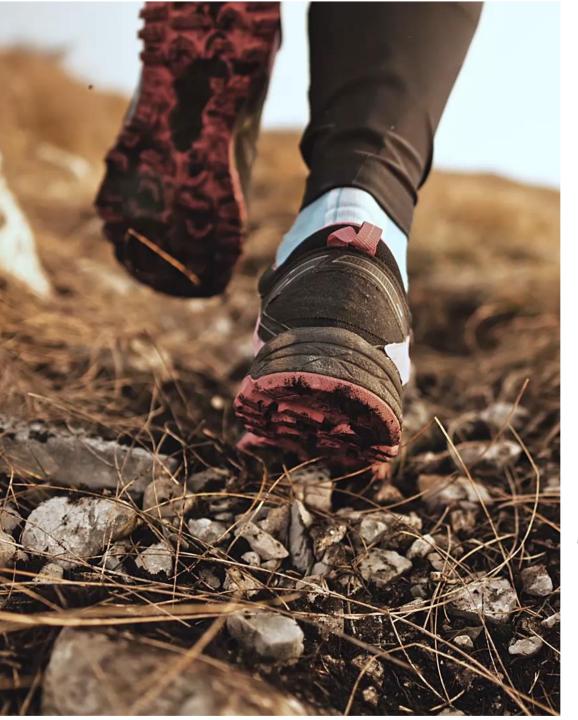
Muscle Performance: Constructs

Kell 2001¹, Sapega 1983², Rebelo 2022³, Hathaway 2024⁴

Isolated Muscle Performance Testing

Isokinetic Dynamometer **Gold Standard** Fixated Dynamometer (With Time Force Curves) Good Force Plate (Plantar Flexion Only) Fixated Dynamometer (Without Time Force Curves) **Acceptable** Pull Gauge OR Crane Scale Field Test Sufficient Manual Fixated Dynamometer Manual Muscle Testing Insufficient





Foot Intrinsics

Muscular Performance

- Motor Coordination
- Muscle Endurance
- Strength

Foot Demands of Locomotion⁶

The ankle muscles (especially the plantar flexors) are key contributors to sport performance and play a critical role in accelerating the body rapidly during sprinting, 1,2 cutting, 3 or jumping4

These ASSUMPTIONS are based on an oversimplified rigid foot model, i.e., no deformation of the foot.⁶

This leads to **overestimating ankle power** while simultaneously **underestimating the power generated** by the structures within the foot⁵

Whatever the hip, knee, and ankle power generation capability, if your foot system "deforms" under tension and is *not* able to transfer that power into the ground, your technique, mechanical effectiveness, and, ultimately, acceleration performance degrade.

Important contributors for (1) lower limb power transfer & (2) push-off:

- 1. Ankle Plantar Flexion Power
- 2. Foot Structures to resist deformation

The power of the ankle plantar flexors is equally as important as the capacity of the foot structures to resist deformation for efficiently promoting power transfer during push-off

Muscle Performance: Foot Motor Coordination

Vertical Navicular Drop Height is associated with **↑ risk of lower extremity injuries**, **BUT** the relationship is complex and *NOT* necessarily causal.

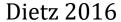
Navicular Drop & Injury Risk

- A **significant association** exists between **navicular drop >5 mm** & **various lower extremity injuries** (i.e., patellar tendinitis, iliotibial band syndrome, and plantar fasciitis)¹
- **navicular drop** is a predictor of **medial tibial stress syndrome (MTSS)** in high school runners²
- **navicular drop** (and anterior pelvic tilt) are **significant predictors** of prior ACL injury³
- The function & structure of the **medial longitudinal arch (MLA) of the foot** (surrogate measure of navicular height) has been proposed as a risk factor for developing injuries.⁷
- Navicular drop is also associated with a risk of lateral ankle sprains in adolescent athletes

However...

- NO clear link between foot posture and injury likelihood exists^{8,9}
- NO correlation between sit to stand NDT & dynamic navicular drop during gait, suggesting that static
 measures of NH change may NOT predict dynamic navicular motion in gait¹¹
- Evidence shows that the **navicular drop** is a **poor predictor of the dynamic navicular drop**¹⁰⁻¹³ and that it is therefore **necessary to measure the navicular drop dynamically** in order to **be representative for foot function**. ^{14,15}

Muscle Performance: Foot Motor Coordination


Modified Spring Ankle Test (Navicular Drop Test)

Motor Coordination

Sufficient | Field Test |

Phase of Test	Description	Criteria
SL Sit to Stand	Client goes from a sit to stand on 1 leg w/ toes extended	• 3-5 mm drop from NWB to WB
SL Squat	Client squats to knee over 2^{nd} 3^{rd} met by $2"$	 3-5 mm drop from NWB to WB Unable to achieve knee 2" over toe
SL Calf Raise	Client performs a SL calf raise with max heel height	• Able to achieve >45° foot relative to floor

Note. Met, metatarsal, mm, millimeter; NWB, non-weight bearing; WB, weight bearing; SL, single leg

Field Test

Recommended Criteria

- \geq 60 sec holds, full body weight all conditions w/ single leg
- Limb symmetry index >90%
- Higher level athlete: ≥60 sec hold, body weight + 20% BW all conditions w/ single leg

Muscle Performance: Foot Intrinsic Endurance

Midfoot Endurance Battery

□ Equipment:

• Step & Timer

☐ Conditions:

- 1. Straight Knee + Max PF
- 2. Straight Knee + Max DF
- 3. Knee Flexion 75° + Max PF
- 4. Knee Flexion 75° + Max DF

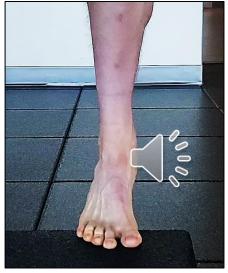
□ Modifications:

- Double legs instead of single leg
- Less knee flexion
- Hallux Grip

□ Outcome:

- Time (sec) to heel drop by 20% of max
- Goal: 60 sec on single leg per condition

Max Dorsiflexion


Max Dorsiflexion w/ Hallux Grip

Max Plantar Flexion

Muscle Performance: Foot Strength

Muscle Strength

Tourillon 2024¹, Fraser 2017², Xu 2023³

Acceptable

Fixed Dynamometer


Toe Condition	Average Strength ²	Normative Data ²	Athlete Norm Data ¹	Pass Criteria	Ratio ¹
Hallux	132 N (30 lb)	1.97 N/kg 20% BW	2.7 N/kg 27% BW	>90% LSI ≥ 20% BW	<u>Hallux</u> Lesser Toes
Lesser Toes	121 N (27 lb)	1.80 N/kg 18% BW	2.2 N/kg 22% BW	>90% LSI ≥ 18% BW	1.2-1.3

	Group Means (SD) Baseline Reassessment						Inter-rater Reliability				Test-Retest Reliability						
	Tes	ter 1	Tes	ter 2	Tes	ter 1	Tes	ter 2		Base	line R	easses	ssmen	t Tes	ter 1	Test	er 2
	Rt	Lt	Rt	Lt	Rt	Lt	Rt	Lt	SEM MDC	Rt	Lt	Rt	Lt	Rt	Lt	Rt	Lt
Hallux Flexion (N)	112.3 (38.5)	111.8 (41.0)	142.7 (44.9)	144.7 (48.0)	117.1 (38.0)	119.8 (43.3)	154.6 (52.3)	155.2 (42.7)	18.5 51.4	.75	.87	.82	.87	.68	.76	.85	.92
Lesser Toe Flexion (N)	103.9 (35.0)	110.4 (36.8)	121.5 (35.0)	135.5 (45.1)	117.1 (38.0)	108.4 (29.8)	129.1 (36.4)	144.1 (34.6)	18.0 49.8	.66	.77	.87	.82	.67	.74	0.77	.77
										Po	or	Fai	r	Goo	d]	Excel	lent

Muscle Performance Criteria: Foot

Construct Assessment Criteria

Dietz 2016¹, Guillén-Rogel 2022², Shrader 2005³, Tourillon 2024⁴, Xu 2023⁵

Ankle Sagittal Plane (Plantar Flexion/Dorsiflexion)

Muscular Performance

- Endurance
- Strength
- Power

Muscle Performance: Injury Implications

- 1.6 cm³ ■ mm volume²
- 17.7% (Op) vs 24.8%(Non-op) soleus vol²
- 59% shorter fascicle length⁵

•13% ■ mm volume²

• 14.9% ■ ankle work during isokinetic testing⁷

•8-9% ■ angular velocity w/jump⁶

1-2 years

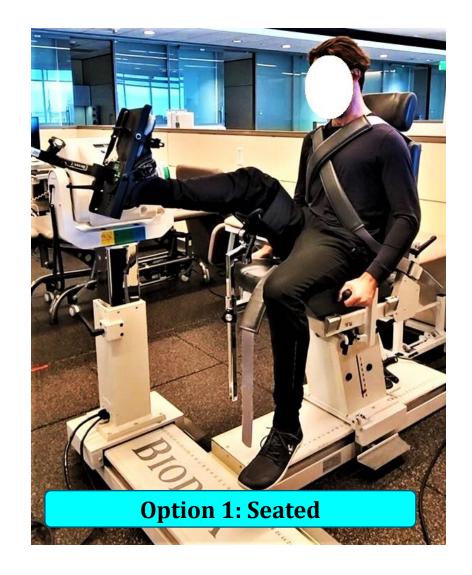
3-5 years

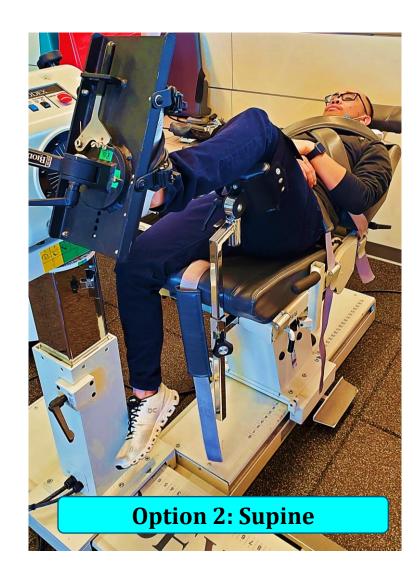
6-10 years

13 years

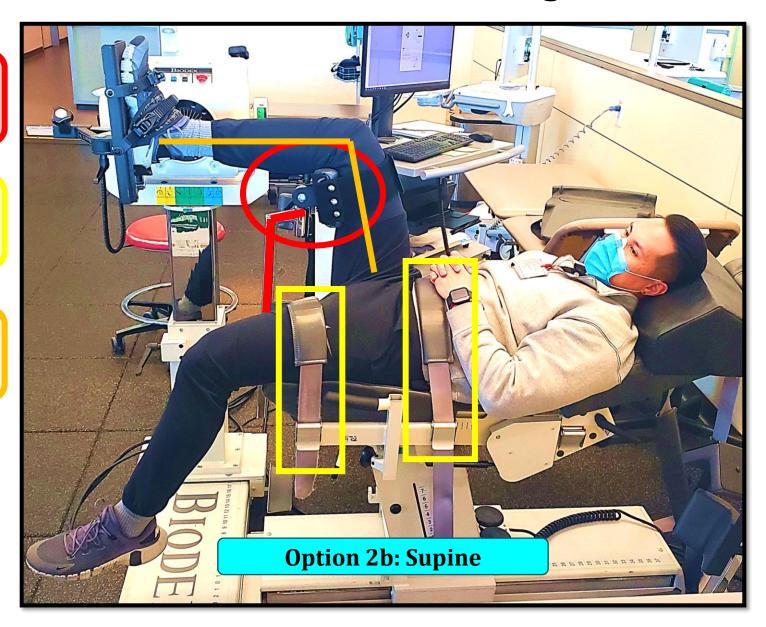
- 47% **♦** plantar flexion iso strength⁵
- +8.1° AT Resting Angle¹
- 12-20% shorter fascicle length³
- Post AT Rupture, **↑176x** contralateral AT pathology (3.1 years)⁷
- Heel height is 25% (3.0 vs 11.9 cm) of opposite leg (AT rupture)⁵

- •11-13% **▼** mm volume²
- 12-18% **♣** plantar flexion strength²
- 12 mm (6%) ★ tendon length (vs uninjured limb)²




Isolated Muscle Performance Testing

Gold Standard Isokinetic Dynamometer Fixated Dynamometer (With Time Force Curves) Good Force Plate (Plantar Flexion Only) Fixated Dynamometer (Without Time Force Curves) **Acceptable** Pull Gauge OR Crane Scale Field Test Sufficient Manual Fixated Dynamometer Manual Muscle Testing Unacceptable



Thigh Support Behind Distal Femur

> Dual Belt Stabilization

Parallel Tibia Knee Angle ~90°

Gold Standard

Isokinetic Dynamometer

Motor Coordination

Muscle Endurance

Muscle Strength

Muscle Power

Jeanfavre 2024

Gold Standard

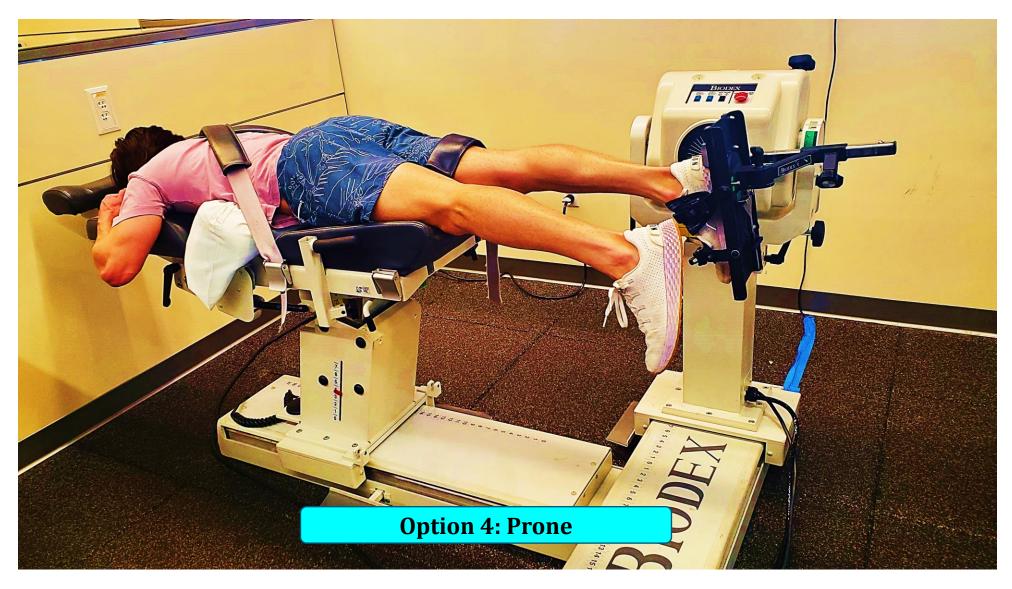
Isokinetic Dynamometer

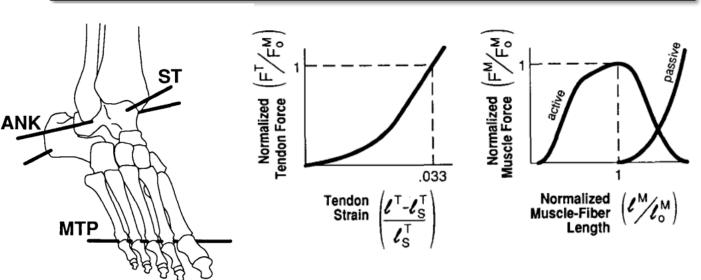
Patient Position

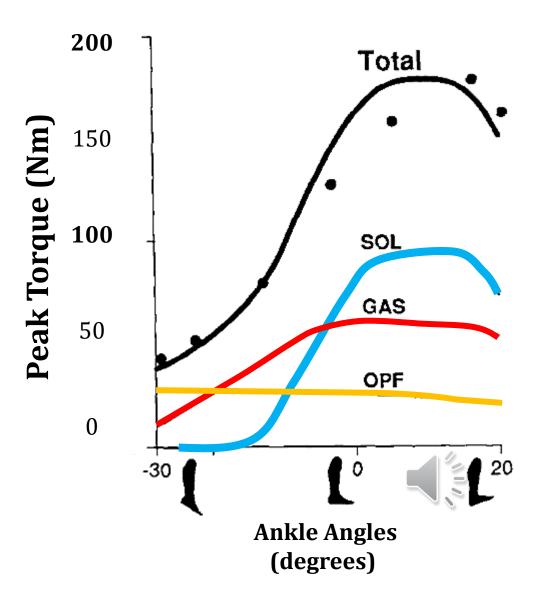
Supine, Knee & Hip @ 0°

Pelvis SupportWaist Belt ASIS

Thigh SupportDistal Femur


StabilizationContralateral Leg &
Hand Hold

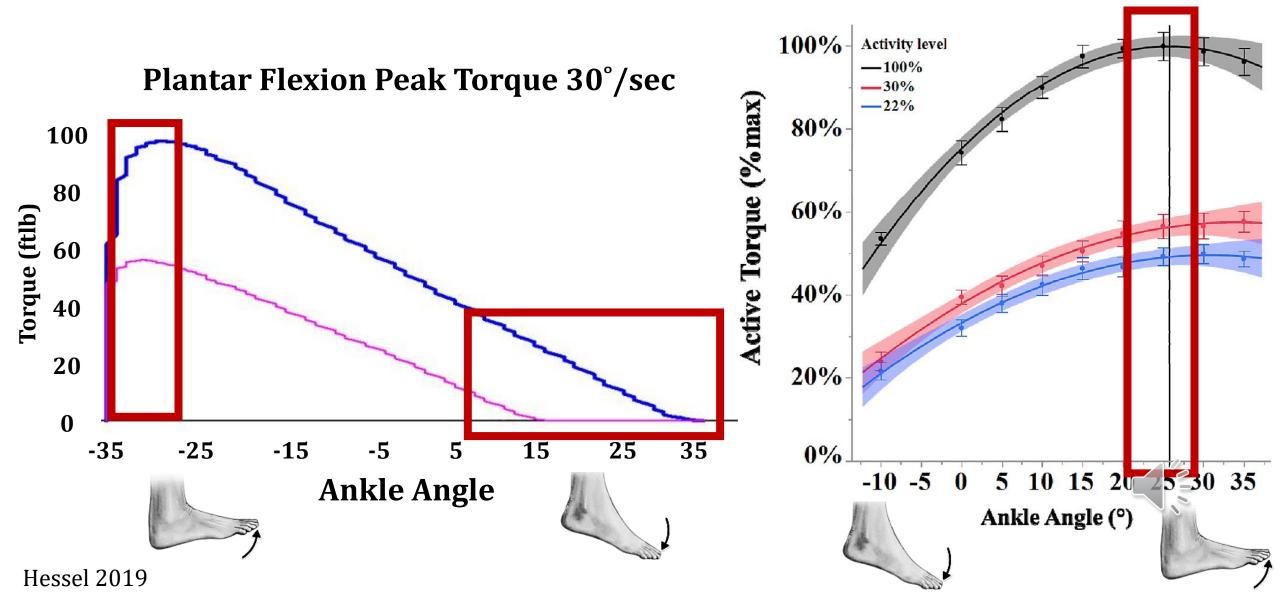

Option 3: Supine Knee Extended



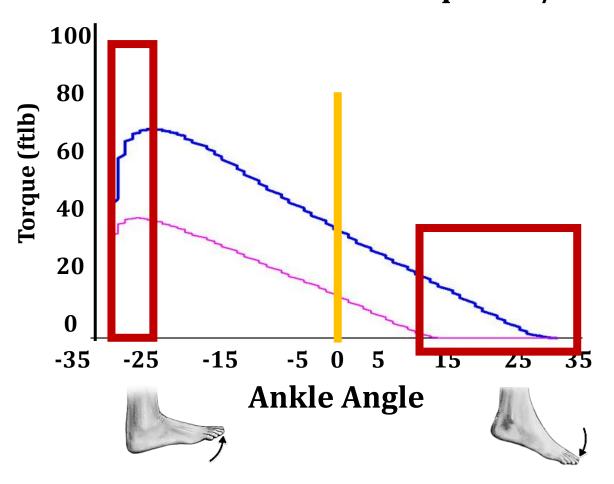
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures


SCOTT L. DELP, J. PETER LOAN, MELISSA G. HOY, FELIX E. ZAJAC, MEMBER, IEEE, ERIC L. TOPP, AND JOSEPH M. ROSEN

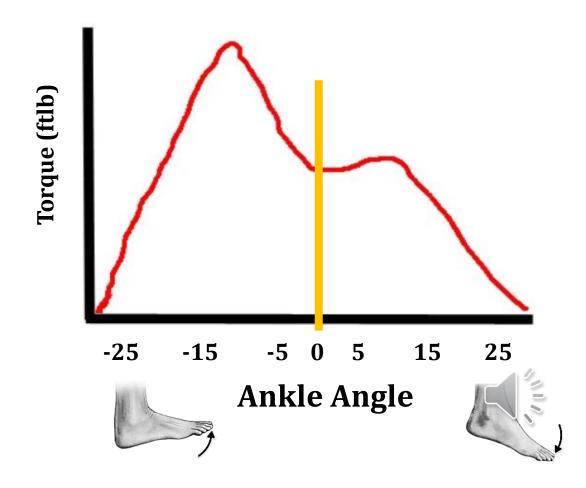
Knee Flexion vs Knee Extended


Do knee angles affect plantar flexion strength testing outcomes?

Knee angles **DO** affect **plantar flexor strength testing outcomes**, **BUT** the extent and nature of this effect can vary based on the specific parameters being measured.

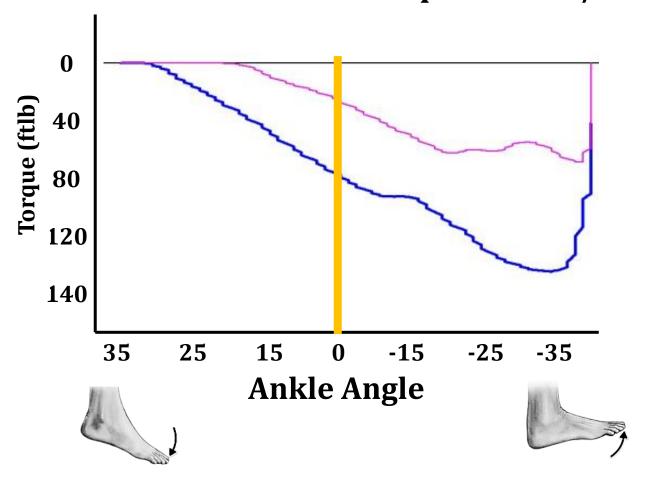

Variable	Influence
Peak Torque & Power	Knee Flexion Angle 15°, 45°, 90°: ★ Knee Flexion Angle → ↓ power and torque ^{1,2}
Fatigue Indicators	Knee Flexion Angle had NO significant affect on fatigue indicators of plantar flexors ¹
Force Steadiness	Knee Flexion Angle do NOT significant affect on force steadiness of plantar flexors
Post Achilles Repair	Knee angle does NOT significantly affect isometric plantar flexion moments , the position of the ankle joint is more critical in determining PF strength post-repair ⁸

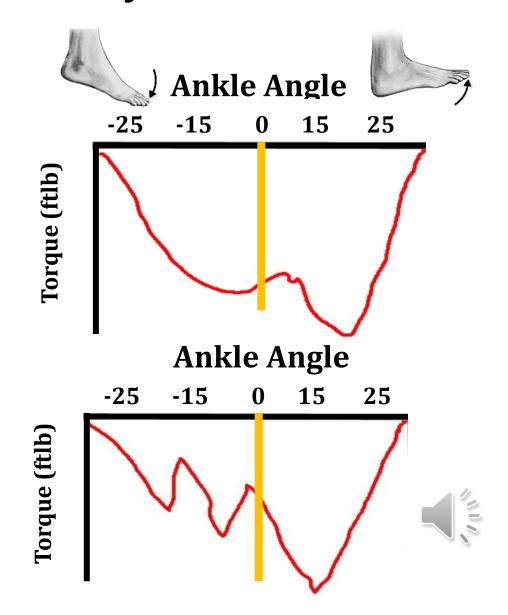
Hebert-Losier 2014¹, Gago 2017², Dargel 2009³

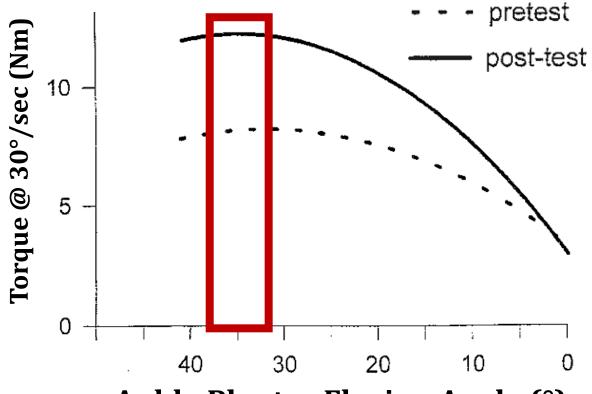


Muscle Performance: Curve Analysis

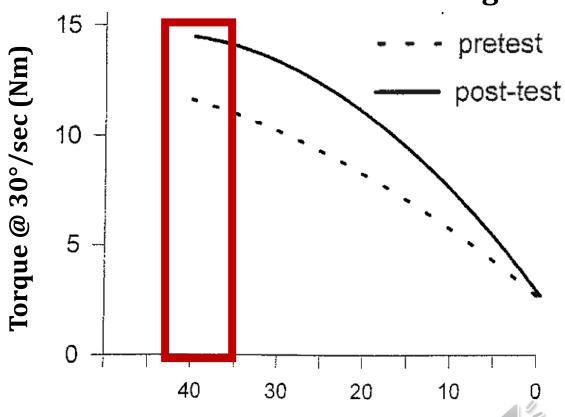
Plantar Flexion Peak Torque 30°/sec




Achilles Tendinopathy


Muscle Performance: Curve Analysis

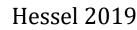
Plantar Flexion Peak Torque ECC 30°/sec



Concentric Dorsiflexion Strength

Ankle Plantar Flexion Angle (°)

Eccentric Dorsiflexion Strength



Ankle Plantar Flexion Angle (*)

Isokinetic Criteria: Plantar Flexion & Dorsiflexion

Construct Assessment Outcome & Criteria

Construct	Level 1 Return to Strength & Conditioning	Level 2 Return to Participation	Level 3 Return to Sport	Level 4 Return to Performance
Motor Coordination				
Muscle Endurance				
Muscle Strength				
Muscle Power				

Isolated Muscle Performance Testing

Gold Standard Isokinetic Dynamometer Fixated Dynamometer (With Time Force Curves) Good Force Plate (Plantar Flexion Only) Fixated Dynamometer (Without Time Force Curves) **Acceptable** Pull Gauge OR Crane Scale Field Test Sufficient Manual Fixated Dynamometer Unacceptable Manual Muscle Testing

Single Leg Heel Raise Test

☐ Patient Position

- 1 leg stance, knee & hip 0°
- Ankle 0° OR 10°2,5,6 DF Slant Board
- Forearm length away from wall

□ Equipment

- Tape Measure (heel height)
- Calf Raise App
- Metronome App
- Wall/stable object

☐ Start Ankle @ 0° OR 10°2,5,6 DF

Heel Height Statistics

Reliability ICC: **0.91-0.94**⁸

SEM: **0.16** cm⁸

MDC (% of Heel Height): 2.22-4.62⁸

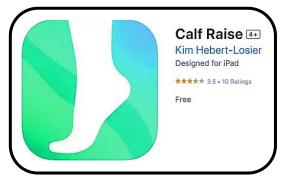
Meaningful Asymmetry: >10% LSI

of reps is NOT Correlated w/ PF PT

 $(r = -0.005^3)$

Reliability ICC: **0.57**¹**-1.00**²

SEM: Young: **1.1**°⁷ | Older: **2.4**°⁷


MDC (# of reps): 3.7-5.24

Meaningful Asymmetry: >10% LSI

Single Leg Heel Raise Test

- ☐ Heel Height
 - Peak Height & Total Height
 - % Height Loss (Fatigue Index)
- ☐ Total Work
- ☐ Total Power

Calf Raise App vs Linear Encoder

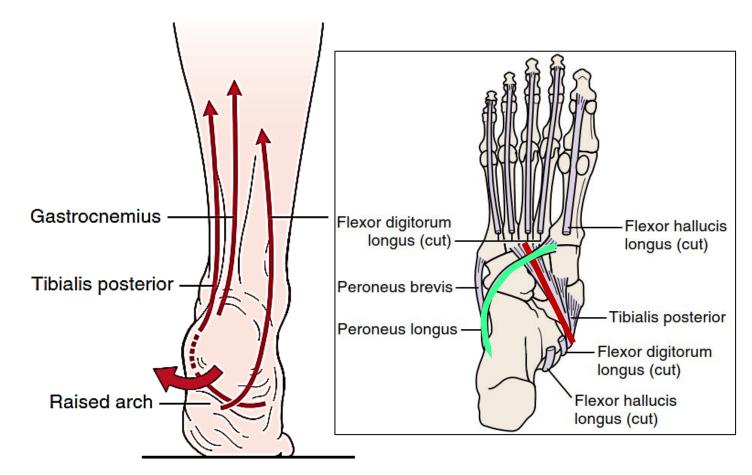
Concurrent Validity

Total Work: ICC= 0.89¹-0.963³

Number of Reps **100%** consistency

Avg Heel Height (cm): $ICC = 0.62^{1}$

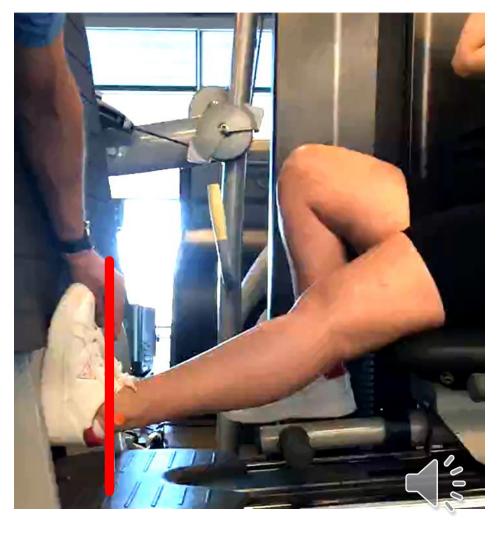
Note. using the heel as a surrogate for center of body mass **overestimates the total work with 21.0-24.7%** compared to a gold standard (3D motion capture) BUT it was able to precisely detect the **relative difference between the limbs**.²

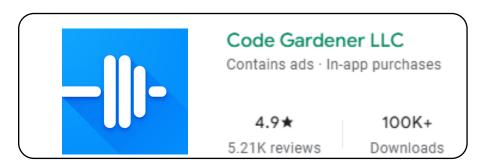

Using the heel-rise work test is **valid** when using the **relative difference** between the limbs.²

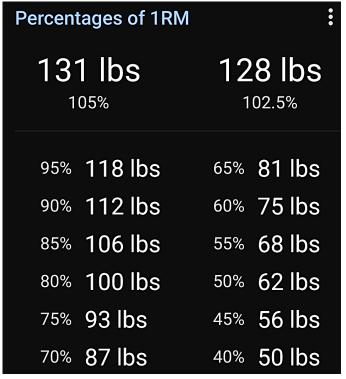
Single Leg Heel Raise Test

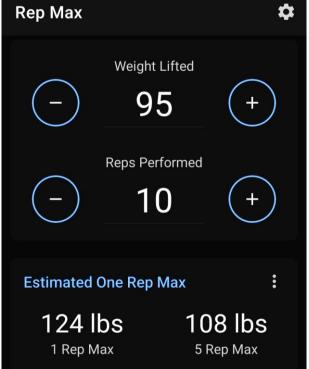
Qualitative Assessment

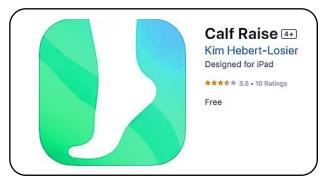
- **□** Maintain Original Footprint
- ☐ Foot & Ankle Mechanics¹
 - Plantar Flexion at the Ankle
 - Plantar Flexion at the Foot
- ☐ Test Stops When²
 - Metronome Pace could not be maintained
 - Heel height drops by 20% of original height
 - Knee Flexion Occurred
 - Hip propulsive Strategy was used
 - Forward lean into wall (rather than vertical)
 - Ensure force through 1st ray³
 - Ankle maintains alignment w/ the 2nd toe³


Though **inversion** of the rearfoot (compliments of the tibialis posterior) is normal during single leg heel raise, **excessive inversion** (i.e., unbalanced via the peroneus mm.) can be compensation for weak plantar flexion.

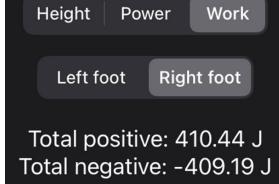

Seated Calf Raise PF Test

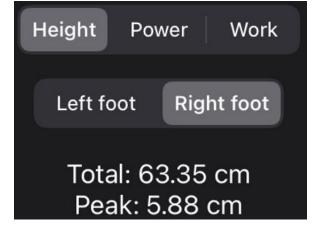

Single Leg Leg Press PF Test

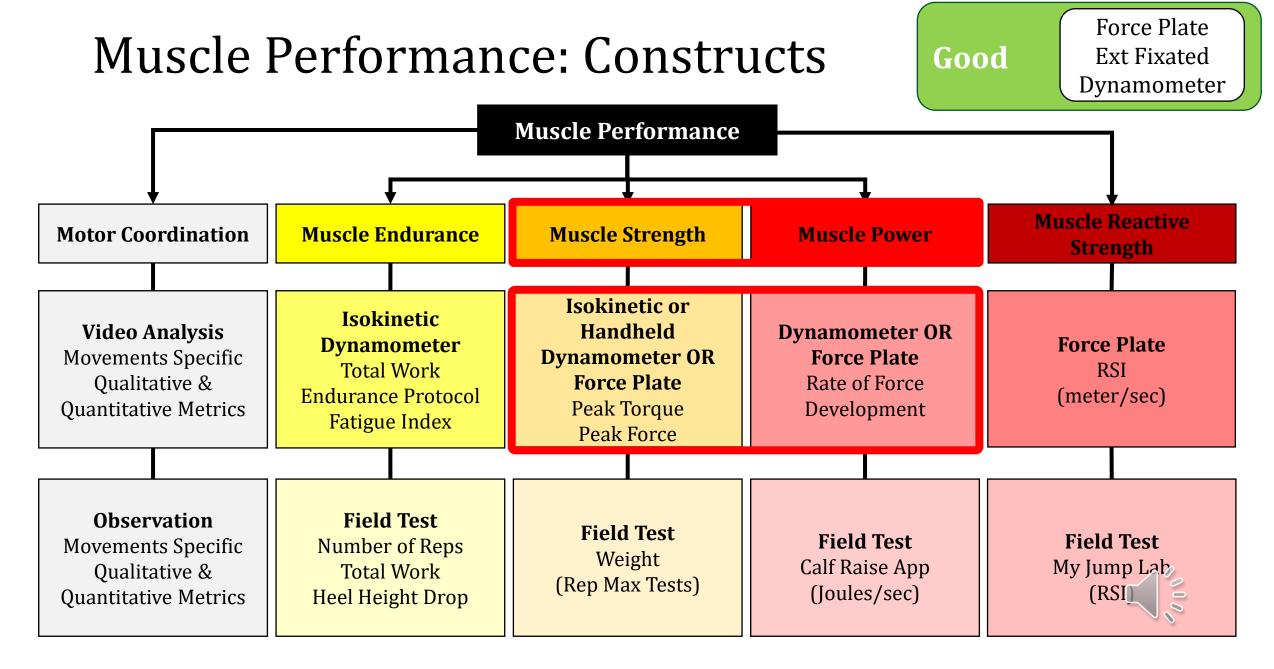




Single Leg Leg Press PF Test







Vertical height loss

Kell 2001¹, Sapega 1983², Rebelo 2022³, Hathaway 2024⁴

Muscle Performance: Plantarflexion Isometric Strength

Standing Ankle Iso PF Test¹

□ Patient Position

- Standing with Hip 0°, Knee 0°, Ankle ~5° PF
- Shoulders supporting on Barbell
- Position: the ball of the foot of the tested leg is placed under the bar to facilitate a slight forward lean

□ Equipment

- Barbell or Isometric Rack
- Force Plate (or comparable system)

□ Warm Up

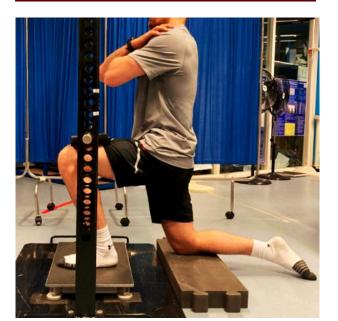
- General Warm Up: 3 min, stationary cycle, 1 W/kg BW
- Specific Warm Up: 3 x 3 sec efforts at 70%, 80%, 90% effort with 10 second recovery between efforts.

□ Test Specifics

- Tempo: Isometric
- Repetitions: 3-5 max efforts/leg
- Rep Duration: Rest: 60 seconds between sets
- Max Force Test: 3-5 x 5 sec (2 sec build-up, 3 sec max)
- Rapid Force Test: 5 x 1 sec (10 sec recovery) (repeat 2-3x)
 - Rapid Force Test Outcome: Force at 100 ms

Muscle Strength

Good


Muscle Power

Force Plate

Coefficient of Variance: <3-10%²⁻³ MDC or SEM: *TBD*

Force Plate ½ Kneeling

Force Frame Seated

Fysiometer Seated

HHD Seated

Testing Recommendations²

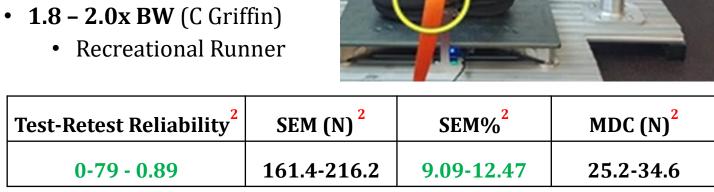
- ☐ **Be consistent** w/ set up & execution
- ☐ Minimal effective padding to achieve 'comfortable' testing
 - Too much padding can effect RFD & instability
- ☐ Apply more tension than you expect to strap or bar
 - go 90% of the way & allow the athlete to do warm-up reps.
 - then add another 10% for their testing reps (ensure no heel lift)
- □ Ensure **proper seated height** to avoid hip flexor cramping & achieve best results

McMahon 2023¹, Bean 2024²

Ankle: Plantar Flexion Isometric Strength

Muscle Strength

Muscle Power


- 2 x BW (Seth O'niell)
 - Premier Football
- **2.6 x BW** (Rhodes 2022)
 - Everton FC Academy
- 1.8 x BW
 - Munster Rugby
- **2.0 x BW** (Seth O'neill)
 - English Premier Rugby

Good

Force Plate

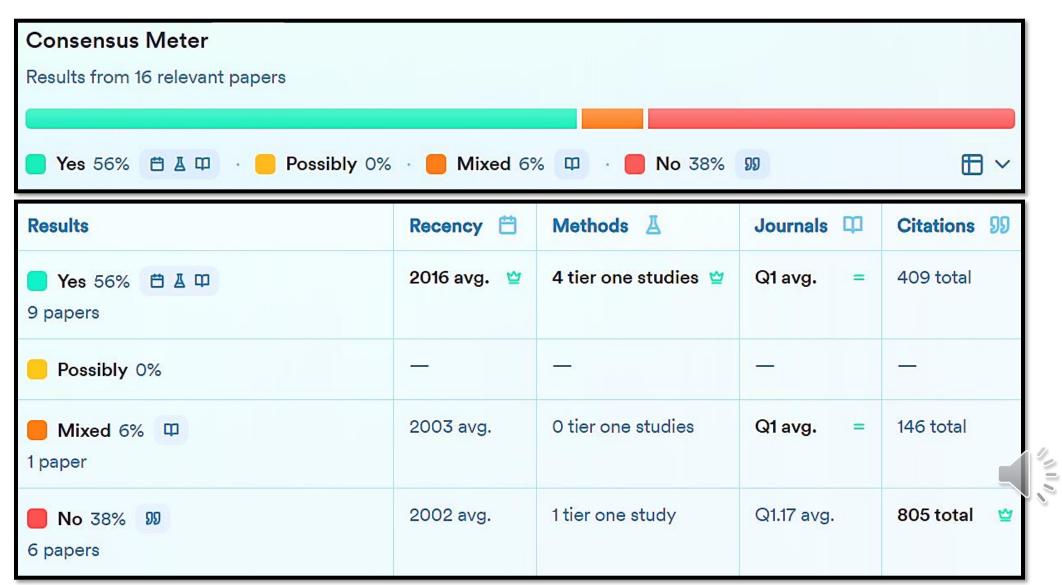
Fixed Dynamometer

Test-Retest Reliability ¹	ICC: 0.915-0.938
BW Ratio (%) ¹	Female: 127.3% (± 37.8) Male 136.9% (± 27.2)
MDC (kg) ¹	25.2-34.6 kg

Muscle Performance Criteria: Plantar Flexion Field Tests

Construct Assessment Criteria

Ankle Frontal Plane (Inversion/Eversion)


Muscular Performance

- Endurance
- Strength
- Power

Muscle Performance: Inversion & Eversion

Are there strength deficits in ankle inversion and eversion in functional ankle instability?

Muscle Performance: Inversion & Eversion

Gold Standard

Isokinetic Testing

- ☐ Patient Position
 - Seated with Hip ~90°, Knee 15-45°, Ankle ~10°
- □ **Speeds:** *30°*, *60°*, *90°*/*sec*
- □ Range of Motion: $30^{\circ}-50^{\circ}$ (INV: $30-50^{\circ}$ | EVR: $15-25^{\circ}$)⁵⁻⁶
- ☐ Test Specifics
 - Speeds: 30°, 60°, 90°/sec
 - 1 set per speed (unless testing CON & ECC)
 - Practice Reps: 3-7
 - Strength: 5-10
 - Endurance: 20
 - Rest between sets: 30 seconds
- **□** Outcomes
 - Normality of force curve ("Strength Curve Profile")
 - Peak & Average Torque (Limb symmetry index)
 - *Torque/Body Weight:*
 - Total Work
 - Fatigue Index
 - Eversion to Inversion Ratio: $\ge 95\%^{2,4}$

Isokinetic Criteria: Plantar Flexion & Dorsiflexion

Construct	Assessment	Outcome & Criteria	Limb Comparison	
Muscle Endurance	INV-EVR CON-CON 60°/s³ & 120°/s⁴	☐ INV CON 60°/s Tot Work: Normative Values Unknown ☐ EVR CON 120°/s Tot Work: Normative Values Unknown		
Muscle Strength	Concentric INV & EVR Peak & Avg Peak Torque (PT) 30°/s & 60°/s	Concentric 30°/sec □ INV CON PT/BW: M: 12-16% F: 14-19% ^{1,3} □ EVR CON PT/BW: M: 13-17% F: 12-16% ^{1,3} □ EVR:INV CON: M: 87% (65-108%) F: 81% (58-103%) ¹	90% LSI &/or	
ECC & CON, EVR & INV 30°, 60° & 120°/s	Eccentric 30°/sec □ INV ECC PT/BW: 36% ⁵ EVR ECC PT/BW: 35% ⁵ Eccentric 60°/sec □ INV ECC PT/BW: 36% EVR ECC PT/BW: 34.5±8.66 Eccentric EVR / Concentric INV 120°/sec □ @ 15° INV: 3.9±1.7 ² @ 20° INV: 4.9±2.5 ²	90% of Demographic Norm		
Muscle Power	Isometric INV (15° EVR) EVR (15° INV)	□ RFD 20-80% MVC □ RFD 100 ms		

Note. CON & ECC, indicated muscle actions tested non-consecutive repetitions.

Wong 1984¹, Yildiz 2019², Biodex Inc.³ Wimpenny 2023⁴, David 2013⁵, Sierra-Guzmán 2018⁶

Muscle Performance: Handheld Dynamometry

Muscle Strength

Muscle Power

Acceptable

Fixed Dynamometer

Sufficient

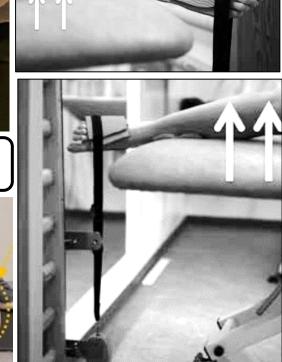
Manually Fixed HHD

	Inter	Inter-Rater Reliability			Test-Retest			
	Baseli	Baseline Reassessment		Tester1		Tester2		
	Rt	Lt	Rt	Lt	Rt	Lt	Rt	Lt
Ankle Dorsiflexion	.60	.61	.76	.67	.82	.88	.83	.88
Ankle Plantar Flexion	.77	.88	.83	.89	.68	.86	.84	.92
Ankle Inversion	.69	.90	.53	.85	.73	.87	.83	.83
Ankle Eversion	.74	.79	.71	.65	.85	.79	.78	.74
Hallux Flexion	.75	.87	.82	.87	.68	.76	.85	.92
Less Toe Flexion	.66	.77	.87	.82	.67	.74	.77	.77
	Poor	F	air		bood	E	xcell	ent

Fraser 2017

Muscle Performance: HHD Plantar Flexion

Avg **92-108 lb³** | Force/BW **55%**³ MDC **25** lb² | SEM **9.3** lb²



Avg Force: 132 lb (±59 lb)²

MDC **15%²** | SEM **5.4%²**

Ankle Inversion Strap Fixed Dynamometer

Break Test AVG Force: **72 lb** (±**13.6**)¹

Make Test

Avg Force: **51lb** (**±20.5**)¹ Force/BW: **30% BW**³

Ankle Eversion Strap Fixed Dynamometer

Break Test

Mean Force: 66.0 lb $(\pm 12.5)^{1}$

Make Test

Avg Force: **51lb** (**±12.5**)¹ Force/BW: 29% BW)³

Fixed HHD setups tend to produce **higher force outputs** and **are more accurate** for individuals with greater strength, while **HHD** alone may be more consistent for those with lower strength.⁵

Muscle Performance Criteria: Handheld Dynamometry & 1 RM

Construct Assessment Criteria

Note. RFD, 200 ms has the best reliability, yet good reliability is also noted with the other RFD metrics Predicted PF Strength = 3.735+(0.00618×[Height (cm)])-(0.003320×[Age(yr)])+(0.1121× [Sex*])¹

Predicted DF Strength = 0.637+(0.01573×[Height (cm)])-(0.001958×[Age(yr)])+(0.2659×[Sex*])¹

***Sex:** Male: 1, Female: 0

Foot & Ankle Injuries Implications of the Hip Joint & Muscles: Hip Extension Strength:

- hip extension muscle strength is identified as an independent risk factor for lateral ankle sprains in youth soccer players¹
- An ↑ hip muscle extension force significantly ↓ the hazard of injury¹
 Hip Abductor Strength:
- **Isometric hip-abductor strength** is associated with a **↑**risk of **noncontact lateral ankle sprains** in male soccer players, predisposes athletes to ankle injuries.^{2,3}
- In females, asymmetry in hip abduction strength was a risk factor for non-contact ankle injuries.⁴

Chronic Ankle Instability (CAI):

• CAI cohorts often exhibit
In hip flexor, abductor, and external rotator strength compared to controls, suggesting that hip strength is a critical component in managing and rehabilitating CAI. 5,6

Impact of Fatigue:

Hip-abductor fatigue can negatively influence ankle kinematics & muscle activity, potentially ↑ the risk of ankle sprains during activities like single-leg jumps.⁷

Foot & Ankle Injuries Implications of the Knee Joint & Muscles:

Hamstring Strength & Ankle Instability:

- Strengthening the quadriceps & hamstring muscles may help ★overall lower limb stability & ▼ risk of further ankle injuries^{2,3}

Quadriceps Strength & Ankle Instability:

Systematic review & meta-analysis of 16 studies demonstrated moderate
 concentric knee extension torque normalized to body weight at 60°/s
 (SMD=-0.64, 95% CI -0.07 to -1.22)⁴

Quadriceps Strength & Achilles Tendon Pathology:

Post Achilles tendon rupture → ↓ plantar flexion strength due lingering deficits
 & subsequent elongation of the tendon → ↑ reliance of knee extensor muscle
 to compensate for the ↓ function of the ankle, resulting in greater knee joint
 loads during activities such as walking, jogging, and running.⁵

Muscle Performance: Hip1

Movement	Dynamometer Position	Patient Position	Normative Value (% BW ± SD)
Flexion	5 cm above the upper border of the patella	Sitting	38.54% ± 7.61%
Extension	5 cm above the medial malleolus, at the triceps surae	Prone	27.04% ± 6.46%
Abduction	5 cm above the proximal border of the lateral malleolus	Supine	16.85% ± 4.17%
Adduction	5 cm above the proximal border of the medial malleolus	Supine	16.89% ± 4.05%
Internal Rotation	5 cm above the proximal border of the lateral malleolus	Sitting	23.82% ± 8.48%
External Rotation	5 cm above the proximal border of the medial malleolus	Sitting	17.09% ± 5.03%

Alvarenga 2019¹, Jeanfavre 2024²

Goal #1: LSI ≥90%

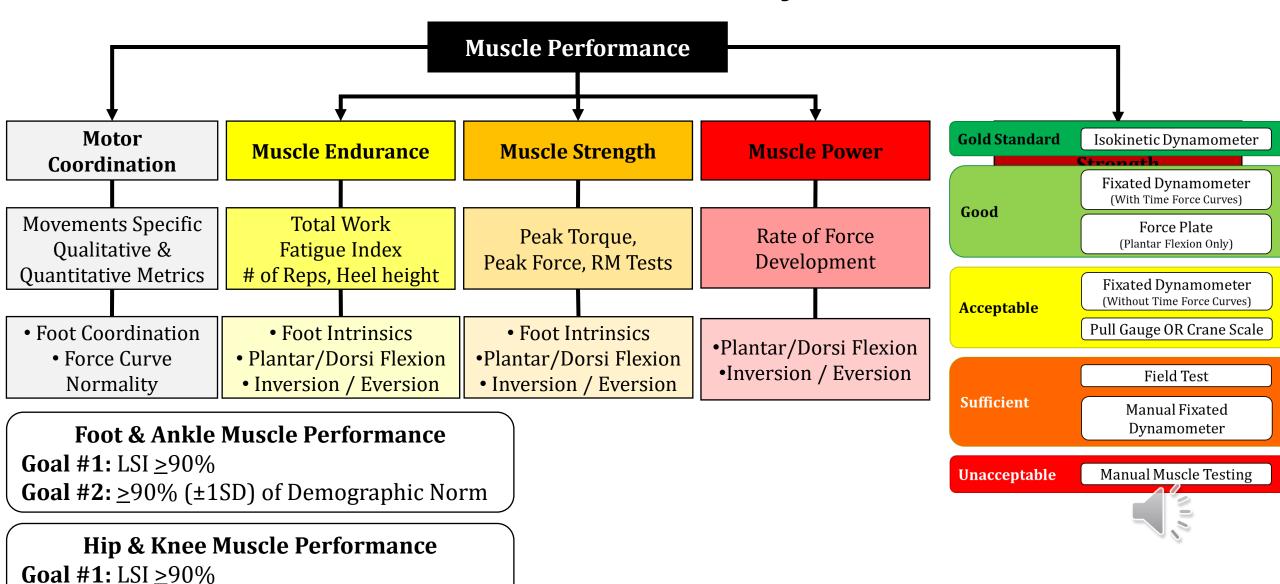
Goal #2: ≥90% (±1SD) of Demographic Norm

Muscle Performance: Knee

Movement	Hand-Held Dynamometer Position	Patient Position	Normative Value (% BW)
Flexion	Knee flexed to 15° (or 45°)	Prone	Male : 52-69%* Female: 48-57%*
Extension	Against the back of the plinth	Sitting	Male: 86-115% Female: 80-95%

Note. *based upon 60% of knee extension normative range

Hamstring Measurement Position ³	Uninjured-Leg Strength (lbs) ³
HHD15 (15°)	52.8 (45.6-62.0)
HHD90 (90°)	44.3 (37.1-49.0)


Goal #1: LSI ≥90%

Goal #2: ≥90% (±1SD) of Demographic Norm

Biodex Manual 2011¹, Jeanfavre 2024², Reurink 2016³

Muscle Performance: Summary

Goal #2: ≥90% (±1SD) of Demographic Norm

