Practical Application of Blood Flow Restriction Training

Stanford Health Care Ortho Sports Medicine Rehab Orthopedic Residency Elective Course

January 15, 2020

Michael Jeanfavre PT, DPT, FAAOMPT, OCS, CSCS

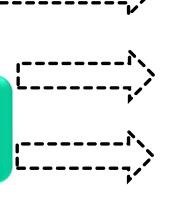
Thank you

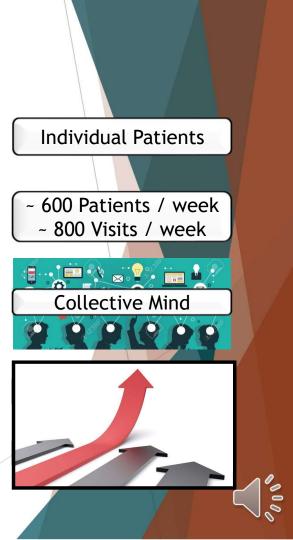
Hand Therapy Association of California Educational Committee Co-Chairs

- Minnie Mau
- Chelsey Kratter

Resources

- 1. Pre-Webinar Slides PDF
- 2. Blood Flow Restriction Practical Application Manual
- 3. Live-Webinar Slides PDF
- 4. Additional Resources: <u>https://www.youtube.com/@MichaelJeanfavre</u>

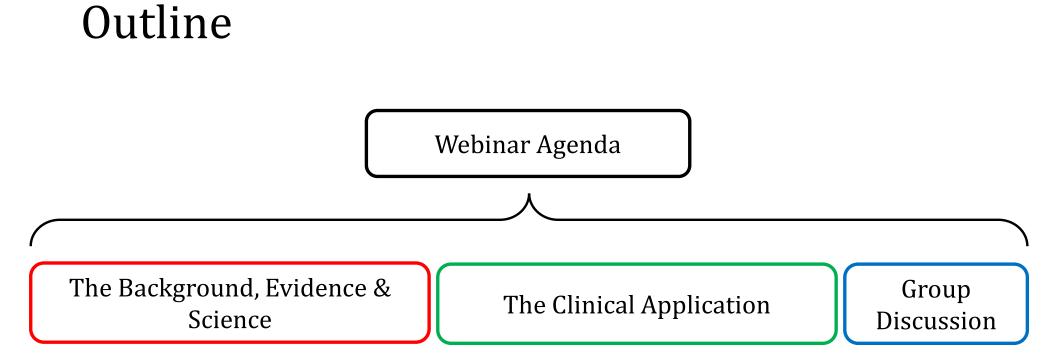

Presentation – BFR: http://bit.ly/491hPqF



The Objective

Individual Therapists

OP Physical Therapy Department



Stanford Health Care Physical Therapy

JM4 add in THE PEOPLE YOU WANT TO DIRECTLY EFFECT and the PEOPEL YOU WANT TO INDIRECTLY AFFECT Jeanfavre, Michael, 4/1/2019 JM5 Tell people how we should view the WORLD and how we should view OURSELVES in the world of PT Jeanfavre, Michael, 4/1/2019 JM6 We should be a beacon of excellence! No from a place of ego but from a place of raising the bar and inspiring others to do the same.

Jeanfavre, Michael, 4/1/2019

Slide 4

Objectives

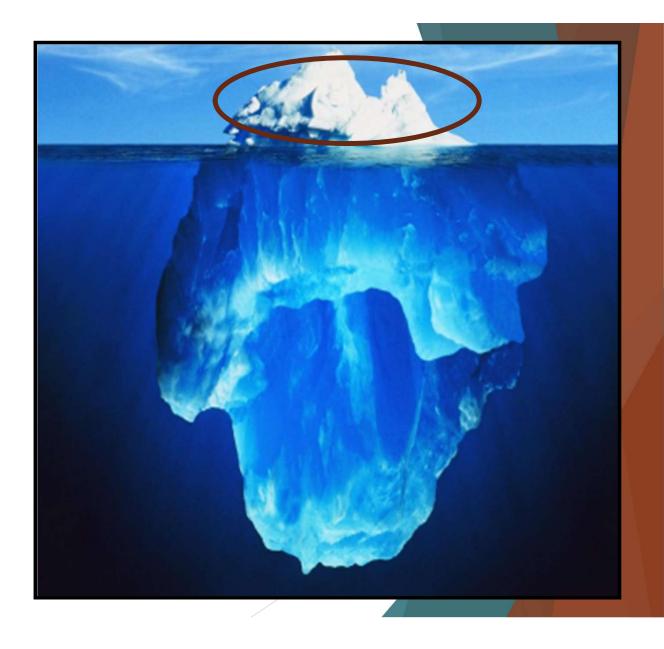
	Ве	The audience will be able to:	
es	Algorithm	Describe an algorithmic decision making process to identifyin appropriate patients for blood flow restriction training (BFRT	
	Utilize	Utilize best evidence screening process to stratify patients' ri of adverse response(s) to BFRT	
	Perform	Perform a limb occlusion pressure (LOP) using the ultrasound doppler for the upper and lower extremity	
	Determine	Determine the optimal occlusion and exercise parameters for BFRT	
	Verbalize	Verbalize evidence and criterion-based clinical progression o BFRT	

Objectives

The audience will be able to:

- Describe an algorithmic decision-making process to identifying appropriate patients for blood flow restriction training (BFRT)
- Utilize best evidence screening process to stratify patients' risk of adverse response(s) to BFRT
- Perform a limb occlusion pressure (LOP) using the ultrasound doppler for the upper and lower extremity
- Determine the optimal occlusion and exercise parameters for BFRT
- Verbalize evidence and criterion-based clinical progression of BFRT

Objectives


The Background & Science

- 1. What is blood flow restriction training (BFR)?
- 2. How does it actually produce said adaptations? (Pre-material)
- 3. Why would I consider using BFR? AND Who can benefit from BFR?
- 4. What does the evidence say about the effectiveness of BFR? (*Pre-material*)
- 5. How do I safely apply BFR in the clinical setting?
 - 1. Is it *truly* safe? And for who?
 - 2. What are the risks & side effects?
 - 3. How do I know if my patient is appropriate?
- 6. Practical/Clinical Application

The Objective

bilde b					
JM4	add in THE PEOPLE YOU WANT TO DIRECTLY EFFECT and the PEOPEL YOU WANT TO INDIRECTLY AFFECT Jeanfavre, Michael, 4/1/2019				
JM5	Tell people how we should view the WORLD and how we should view OURSELVES inthe world of PT Jeanfavre, Michael, 4/1/2019				
JM6	We should be a beacon of excellence! No from a place of ego but from a place of raising the bar and inspiring others to do the same.				

Jeanfavre, Michael, 4/1/2019

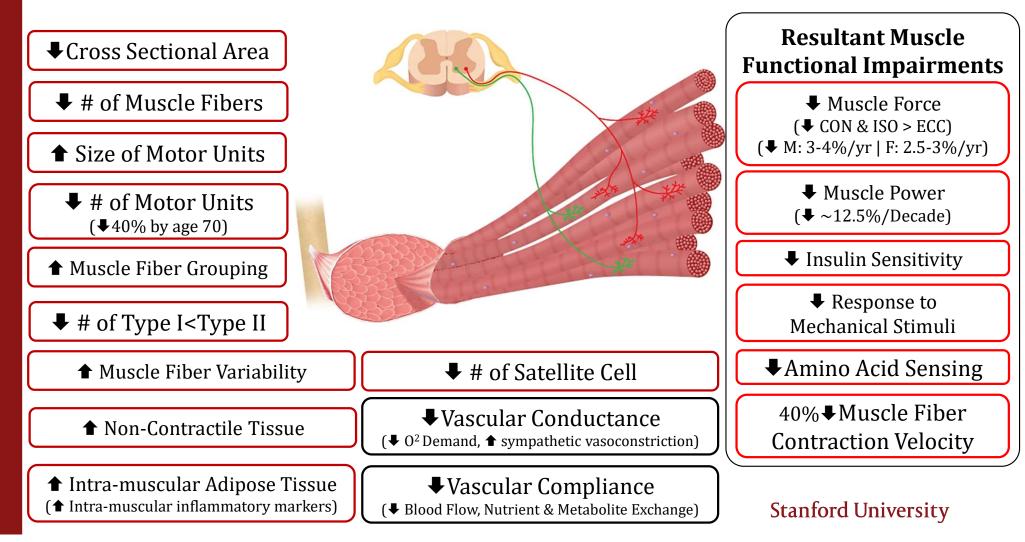
Slide 9

Introduction

Defining the problem

The Problem

Injury & immobilization leads to:


- 🕈 Pain
- Inflammation
- **↓**Tissue integrity
- **↓** Threshold to mechanical stimuli

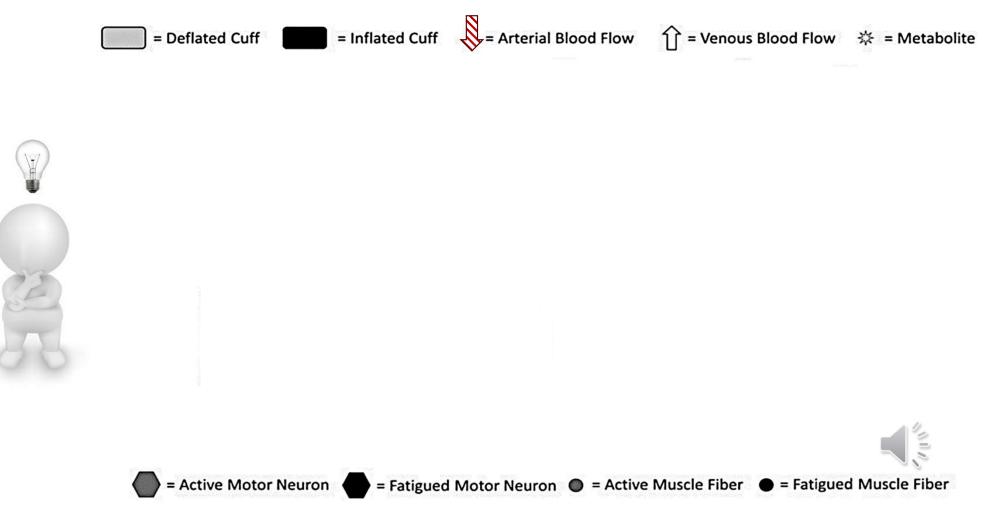
Secondary implications of:

- Muscle atrophy within 5 days of immobilization
- ↓ Muscle strength (↓ 14.8% in 14 d, ↓ 21% after 23 d,) endurance, power
- • Neural excitability & neural drive within 7 days

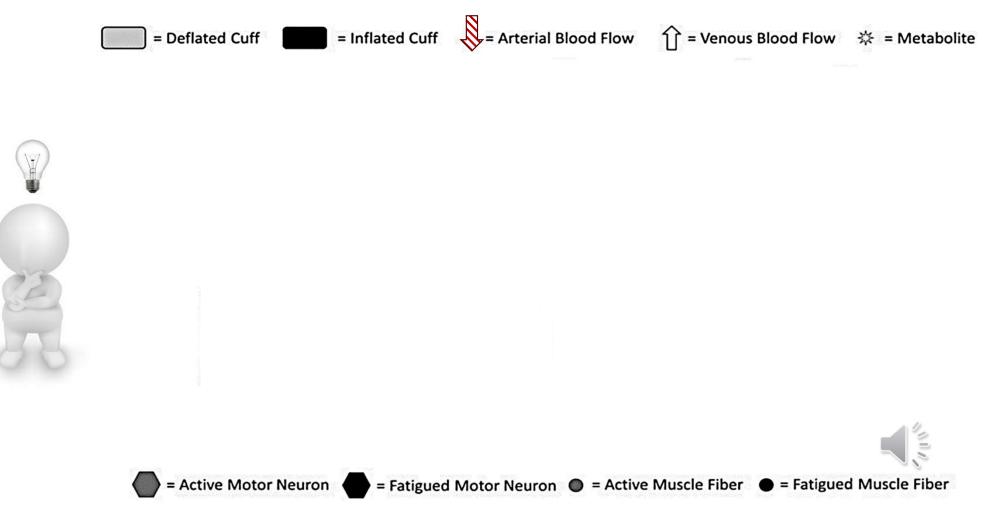
Muscular Adaptation to Aging & Immobilization

Defining Blood Flow Restriction Training

Objective #1: What is Blood Flow Restriction training (BFR)? Objective #2: How does it induce the proclaimed adaptations? (*Pre-material*)

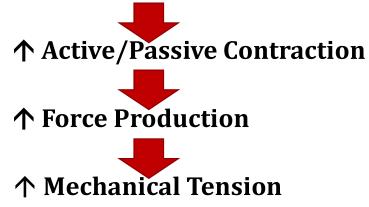

Blood Flow Restriction – Definition

- Entails apply a tourniquet-style cuff on the proximal aspect of a limb(s)
- Cuff is tightened & pneumatically inflated to a pressure that occludes venous flow yet allows arterial inflow



VanWye 2017

The Solution?


The Solution?

Mechanisms of BFR – Hypertrophy: Primary Factors

Mechanical Tension - formed by active (cross bridge) muscle elements & exerted via passive elastic components, such as fascia & tendon, both in series and in parallel¹⁹

↑ External Force/Intensity

(Goldberg 1975, Spangenberg 2008, Vandenburgh 1979)

Metabolic Stress - physiological process that occurs during exercise in response to low energy that leads to metabolite accumulation [lactate, phosphate inorganic (Pi) and ions of hydrogen (H⁺)] in muscle cells²⁰

High Volume Training

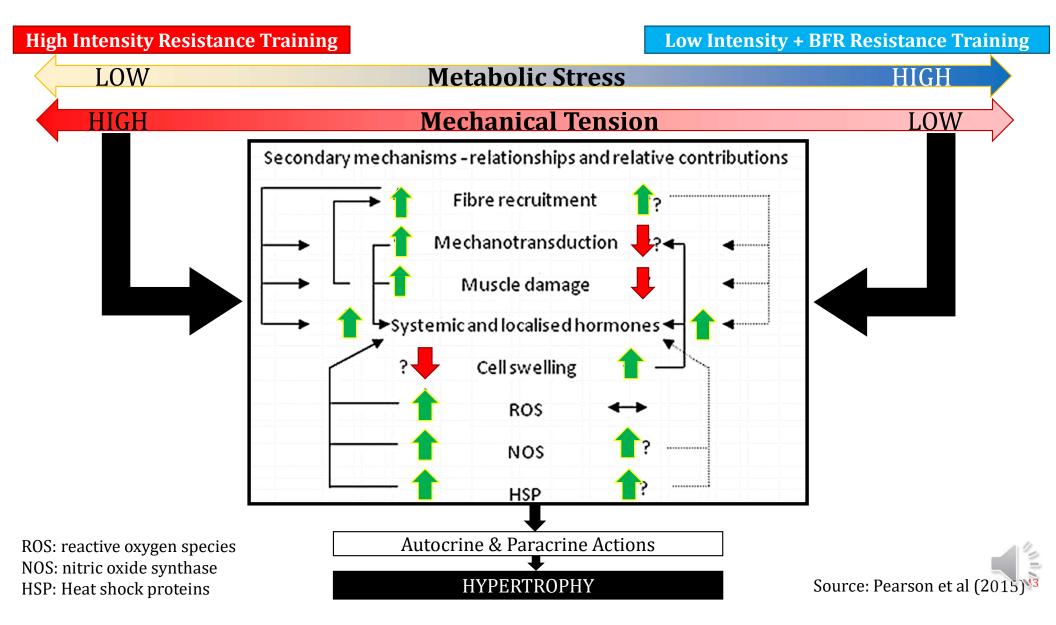
{4-5 sets with 6-12 reps per set} More Metabolic Stress Accumulation of Metabolites like lactate, hydrogen ion, etc More Anabolic hormones and other growth factors

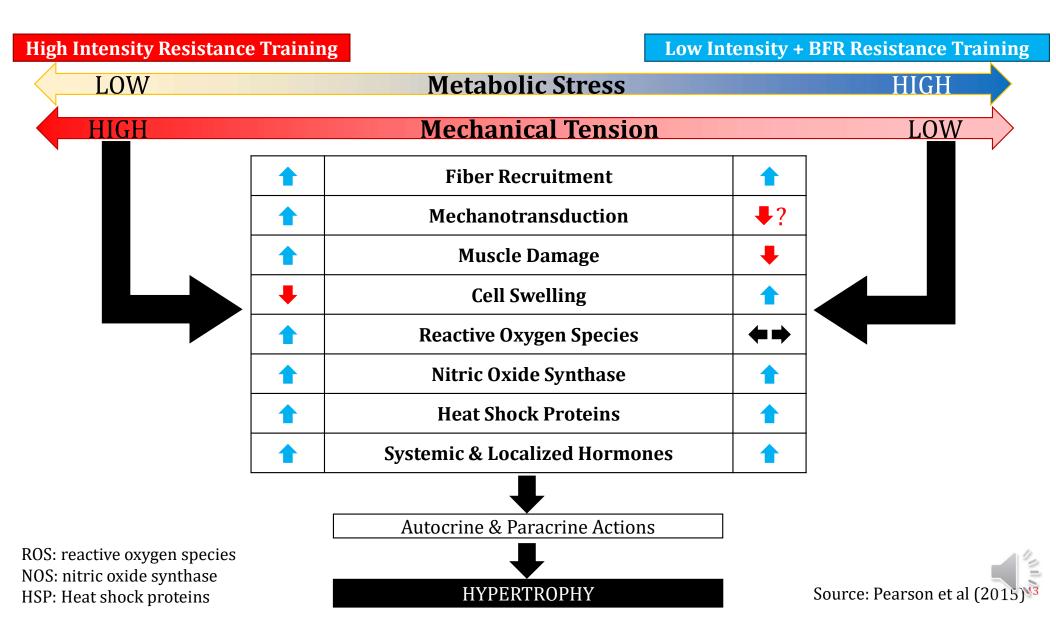
Mechanisms of BFR – Hypertrophy: Primary Factors

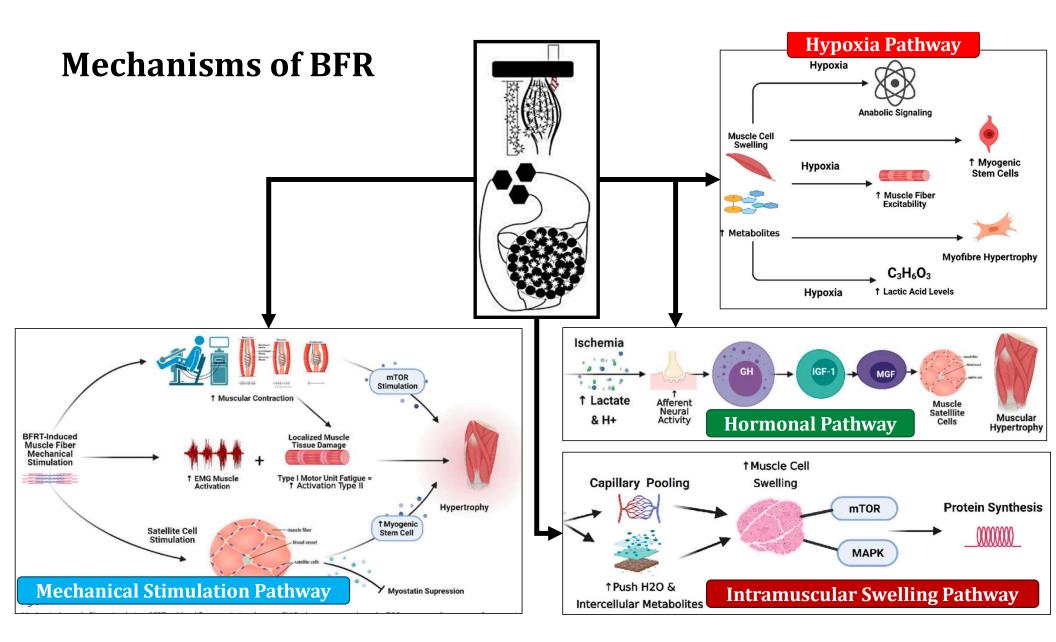
Mechanical Tension

Leads to hypertrophy via:

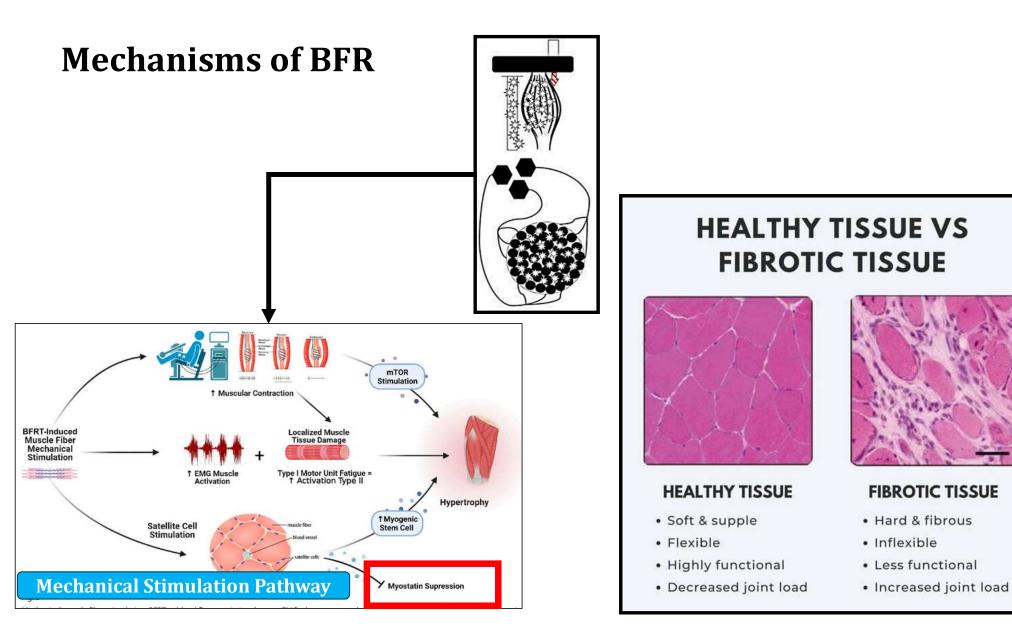
- Mechanotrasduction^{27, 29, 30}
- \uparrow localized hormone production³¹
- Muscle damage³²
- ROS production^{32, 33}
- \uparrow fast twitch fiber recruitment²⁴⁻²⁶

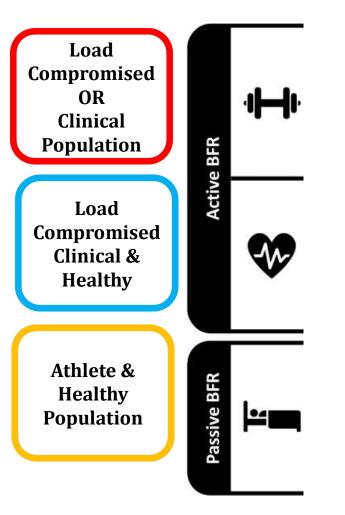

Metabolic Stress


Leads to hypertrophy via:


- \uparrow systemic hormone production³⁴
- \uparrow fast-twitch fiber recruitment^{35, 36}
- Cell swelling³⁷
- Muscle damage^{27, 38}
- ↑production of ROS^{27, 39-41}

Mechanical Tension + Metabolic Stress = Muscle Hypertrophy





Blood Flow Restriction – Definition

Scott 2023

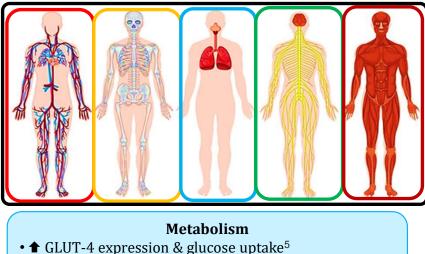
Indications of Blood Flow Restriction

Objective #3: WHY would I consider using BFR? And for WHO?

Indications of Blood Flow Restriction: Why?

Cardiovascular System

- Peak VO2 by 4x (vs control)^{1,2}
- Improved arterial compliance¹³
- Peripheral Vasodilation¹


(HIF-1A)→vascular endothelial growth factor (VEGF) expression & angiogenesis¹

• **\$** SBP (chronic adaptation) & improved HR recovery in HTN¹²

Bone

Nervous System

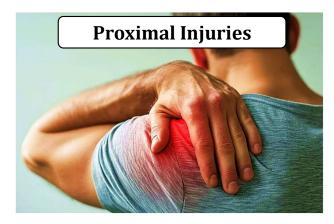
- EMG by 50% (vs LL-RT)^{7,2}
- **\$** short-interval intracortical inhibition (SICI)⁸
- MM fatigue via group III & IV afferent fibers¹
- \clubsuit Corticospinal excitability \twoheadrightarrow influence in force
- capacity of the NM system \rightarrow long term changes in recruitment pattern⁹
- **Figure 2** Pain & **Theorem 2** Exercise induced hypoalgesia^{10,11}

- •
 • mitochondria biogenesis & density & function¹⁶

Muscular System

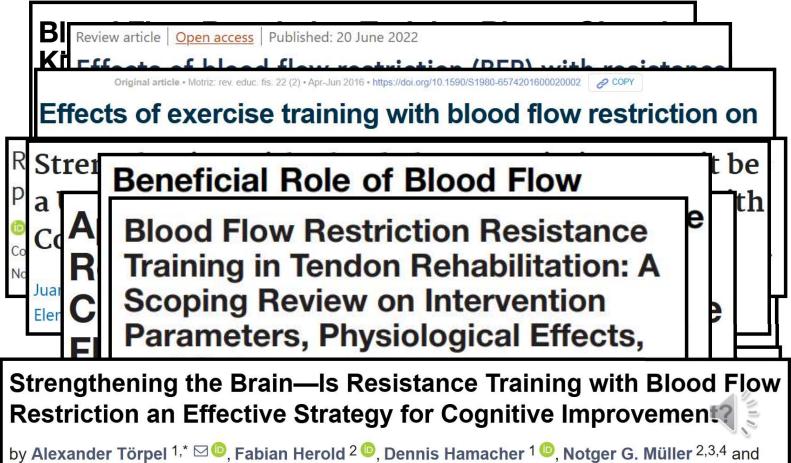
- Type II MFs & EMG ^{3,2}
- **1** activation of mm stem cells¹
- ↑ mm ATP & glycogen stores → improved mm endurace⁵
- **†** GLUT-4 translocation & glycogen synthase activity⁵

Endocrine System


- **†** Stimulation of mTOR³
- **†** Testosterone (acute elevation)¹⁴
- **t** VEGF (promote angiogenesis & **t** blood flow & volume to occluded limb

Cahalin 2022¹, Tanaka 2018², Pope 2013³, Abe 2010⁴, Burgomaster 2003⁵, Cartee 1985⁶, Tanaka 2000⁶, Morintani 1992⁷, Centner 2020⁸, Jessee 2018⁹, Song 2021¹⁰, Hughes 2020¹¹, Zhao 2022¹², Liu 2021¹³, Bemben 2022¹⁴, Golden 2024¹⁵, Franz 2023¹⁶, Cetner 2021¹⁷, Karanasios 2022¹⁸, Kristian 2020¹⁶

Indications of Blood Flow Restriction: Why?



Indications of Blood Flow Restriction: Who?

- Any Gender
- Ages: 13+
- Healthy
- Injured
- Athletic
- CVD
- HTN
- Osteoporosis
- TII Diabetes
- Post COVID
- COPD
- Neurological Diseases
- Cognitive Decline
- Kidney Disease
- COPD
- Tendinopathy

Lutz Schega¹

Efficacy, Effectiveness, & Evidence of Blood Flow Restriction Training

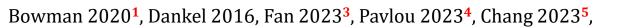
Objective #4: What does the evidence say about the effectiveness of BFR? (*Pre-material*)

Key Summary Points & Take Aways

Practical Implications

- Low load BFR with *proper screening* is safe & effective for a variety of clinical populations and particularly individuals rehabbing from musculoskeletal injuries¹⁻⁶
- Individuals with non-communicable diseases (i.e., DMII³, CVD², Neurodegenerative⁴, CKD⁶, COPD⁵, etc.), with proper precautions, may also *benefit* from LL-BFR regimens.
- BFR offers a variety of positive physiological adaptations beyond just muscle specific adaptations¹
 - hone turnover⁷
 - **1** metabolic function & **1** mitochondrial biogenesis, density & function^{8,9}
 - Cardiovascular peripheral & central adaptations (arterial compliance, angiogenesis, blood flow)^{10,11}
- Incremental graded exposure & systematic progression of BFR, with individualized LOP, exercise prescription, and of sufficient duration (>4 weeks) & frequency will assist with optimizing physiological adaptations.¹

Hughes 2017¹, Angelopoulos 2023², Saatmann 2021³, Vinolo-Gil 20223⁴, Kohlbrenner 2023⁵, Corrêa 2021⁶, Bemben 2022⁷, Franz 2023⁸, Cetner 2021⁹, Cahalin 2022¹⁰, Liu 2021¹¹



Key Summary Points & Take Aways

Practical Implications

- Low load BFR on the upper extremity improves muscle strength, muscle hypertrophy, and pain reduction than is low load resistance training^{1,3-5}
- Positive muscle performance improvements in the proximal muscle groups is dependent upon:
 - LOP Pressure & duration of occlusion
 - Training volume threshold (i.e., proximity to muscle failure) ^{1,4}
 - Duration (>6 weeks) and frequency (3x/wk > 2x/week) ^{1,5}
 - Methods of measurement (i.e., DEXA > circumference measurement)⁴

Key Summary Points & Take Aways

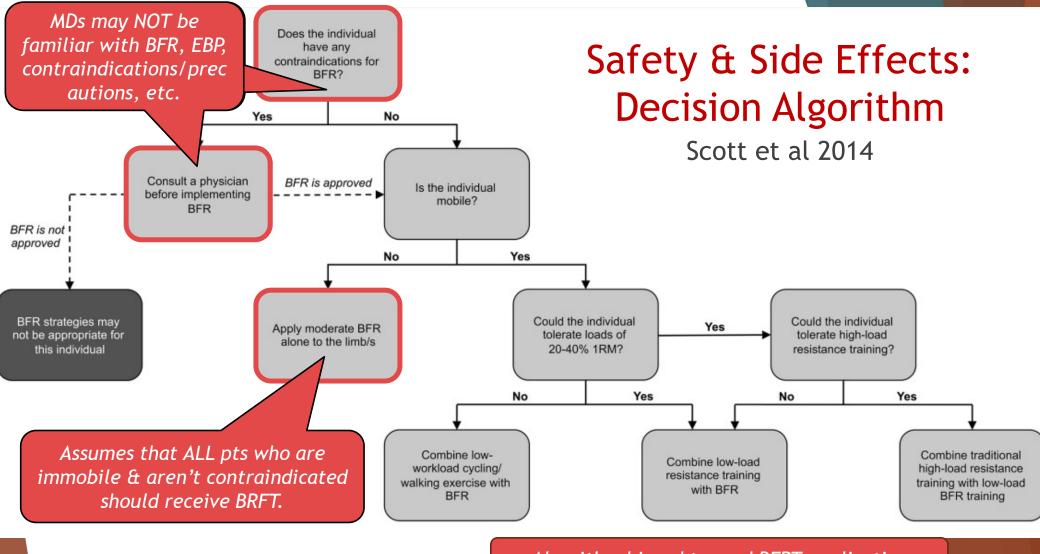
Practical Implications

- Low load BFR on the upper extremity improves muscle strength, muscle hypertrophy, and pain reduction than is low load resistance training^{1,3-6}
- Particular emphasis on eccentric muscle contraction (if resistance is normalized to ECC 1 RM)⁶ aspect of the exercise may help to enhance the strengthening & muscle performance of the contralateral limb³
- (1) volume (fatigue sets), (2) multiple exercises (≥4), (3) ★ EMG activity seem to be important prescription variables in order to induce proximal muscle hypertrophy, strength, and endurance (work capacity) during UE LL-BFR.⁷
- LL-BFR is not only safe & effective, but offers significantly ↓ pain, ↑ muscle strength, and ↑ function in the acute post operative phases of upper extremity rehabilitation (compared to traditional a protocol)⁷⁻⁹

Bowman 2020¹, Hill 2020, Fan 2023³, Pavlou 2023⁴, Chang 2023⁵, Yasuda 2012⁶, Lambert 2022⁷, Fan 2023⁸, Yang 2023⁹

Risk Stratification of Blood Flow Restriction


Objective #5: How do I safely & effectively apply/use BFR in clinic?

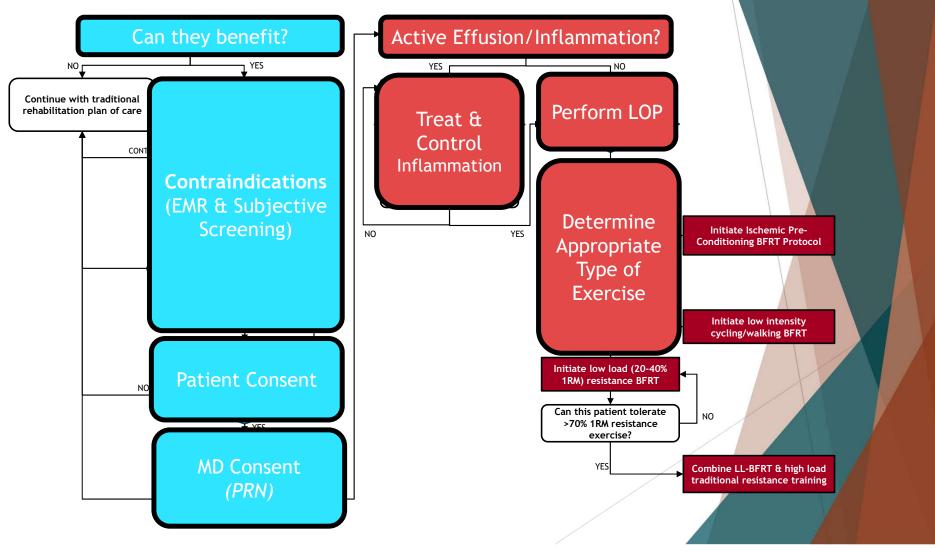

The Structured Process of BFR Implementation

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Screening	Cuff Application	Cuff Pressure	Exercise Stimulus	Exercise Parameters	Monitoring & Progression
Precautions & Contraindications	Location & Cuff Properties	Specific & Individualized Pressures	Type of Exercise	Dosage of Exercise	When & How to Progress

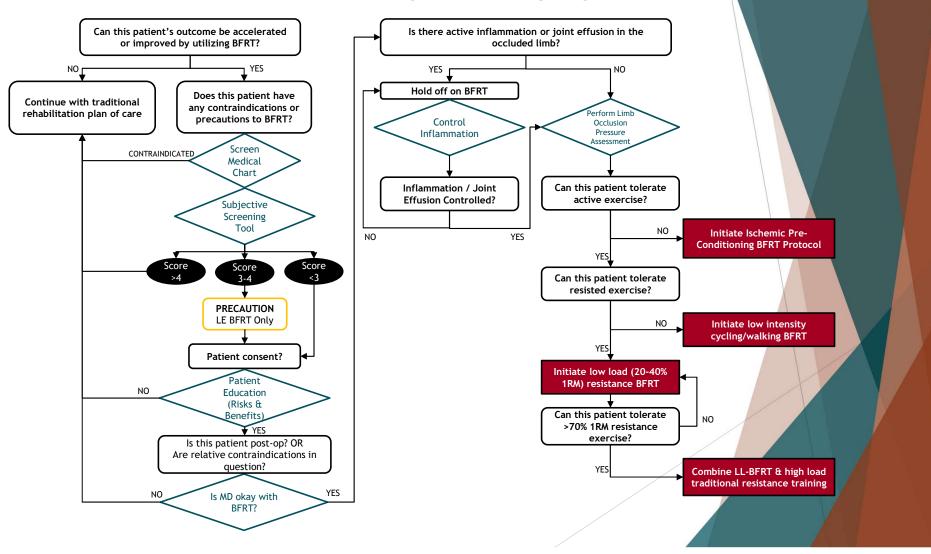
BFRT Screening Algorithm

- 1. Identifying the appropriate patient
- 2. Evidence-based screening process
- 3. Conducting Limb Occlusion Pressures

Algorithm biased toward BFRT application


Metacognition of BFR Application

The clinician should contemplate some specific questions before the application of BFRT:

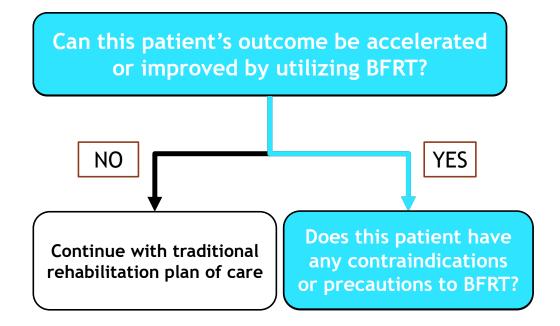

- Is my patient like the participants in the studies with BFRT?
- Does BFRT have a clinically relevant benefit (e.g., improved function or hypertrophy) that <u>outweighs</u> the potential risks of application?
- Yes. Proceed with BFR screening algorithm
- ▶ No. Reconsider proceeding & BFR application

Nascimento 2022

Blood Flow Restriction Training Screening Algorithm

BFRT Screening Algorithm

Would the following physiological adaptations aid in this patient's rehabilitation?

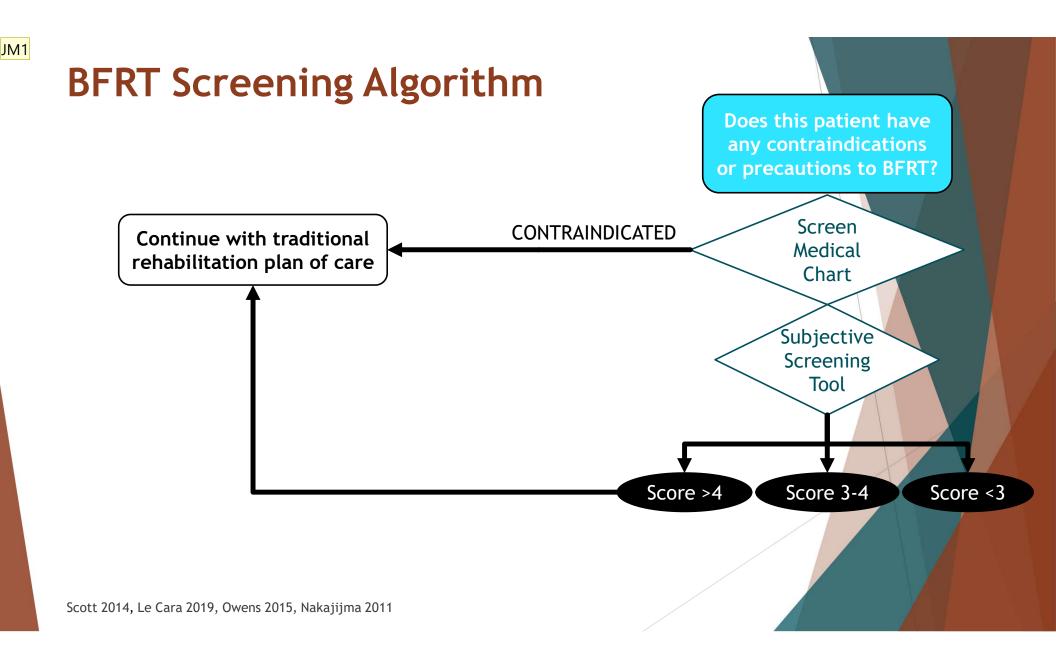

Local Adaptation ^{3,4}	Systemic Adaptations ^{3,4}	
	Systemic Adaptations	Can this patient's outcome be accelerated
Muscle Strength	Cardiovascular conditioning ²	or improved by utilizing BFRT?
Muscle Hypertrophy	Vascular endothelial growth factor (VEGF) <i>formation of new blood vessels</i>	NO YES
Satellite and progenitor cell activation for tissue healing and repair	Soft tissue repair (endogenous growth factor and IGF-1)	Does this patient have
Blood flow and nutrient delivery	Cardiovascular compliance	Continue with traditional rehabilitation plan of care precautions to BFRT?
Bone healing, growth, &/or positive remodeling ¹	Insulin Sensitivity	
Tendon remodeling & 🕇 Cross Sectional Area	Ability to recovery from MACE or HIT	
Bittar 20191 Contaer 20192 Lo Car	2 2010 ³ Owone 2015 ⁴	

Bittar 2019¹, Centner 2019², Le Cara 2019³, Owens 2015⁴

JM1 Add references

Jeanfavre, Michael, 1/11/2020

BFRT Screening Algorithm



Scott 2014, Le Cara 2019, Owens 2015, Nakajijma 2011

JM1

JM1 Add references

Jeanfavre, Michael, 1/11/2020

JM1 Add references

Jeanfavre, Michael, 1/11/2020

JM1

BFRT Screening Algorithm

See BFR Manual

NoteWriter 🐀 🕞 🗶 Clear Daily Note 🖉 - Daily Note Goals Objective Other Specialty Edit N	⊙ <mark>≝ 2</mark> ⑦ ∠
Treatments 5 Goto Treatments Modalities 5 Goto Modalities Precautions 5 Goto Precautions Synopsis 5 Goto Synopsis Interpreter present Comments	5 <u>Goto Flowsheets</u>
Primary Pain Location	Pain Location 2
Pain Pre 🔽 🗹	Pain Pre 2 Pain Post 2 V
Subjective	
🗩 🥸 😰 🕄 🛟 🔸 🤃 einsert SmartText» 🕞 🗲	→ 4/3 =>
Objective 🗩 💩 😰 😭 🚼 🕇 «Insert SmartText» 🔂 🗲	→ 4 =
Assessment	
🗩 🥸 😰 🤉 🕄 🕇 kinsert SmartTexts 🕞 🗲	→ ☆ =>
Dian	
	Pend Sign when Signing Visit Sign X Cance

JM1 Add references

Jeanfavre, Michael, 1/11/2020

Conditional Select Subsequent Screening

- If patient answers "Yes" to the following questions:
 - 1. Hyperlipidemia or High Triglycerides
 - 2. Diabetes

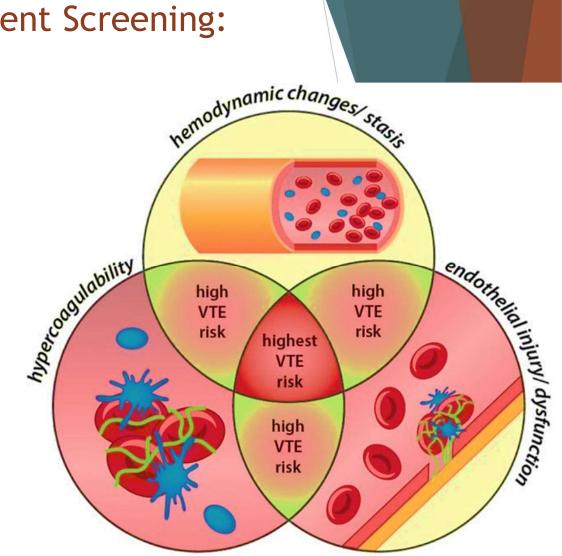
MJ1

- 3. Hypertension
- 4. Obesity
- 5. Hypercoagulability

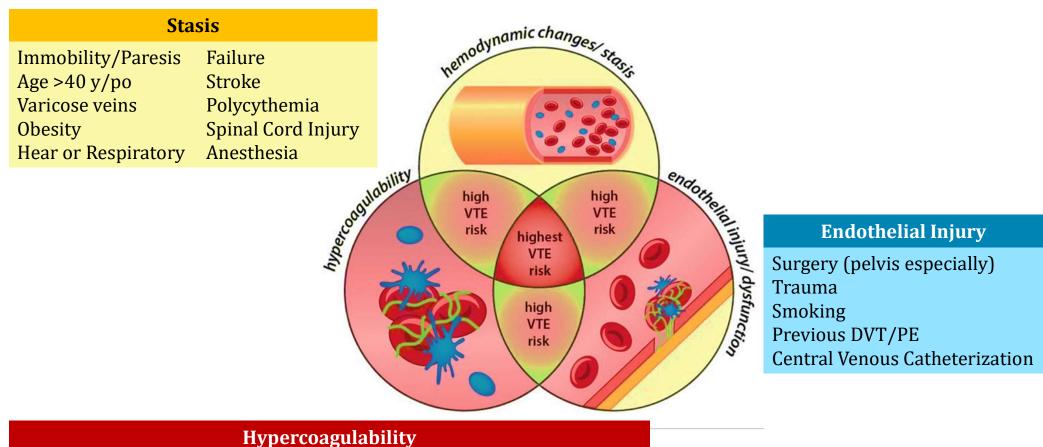
MJ1 Voice over these 6 slides Michael Jeanfavre, 11/10/2024

Symptom Severity Assessment ³⁹					
Dx	Indications	Precautions	Contraind	ications	
ΗΤΝ	- 140-159/90-94 mmHg	- 160-179/95-99 mmHg*	- >180/>100 mmHg - Cardiothoracic ratio >55%	 Uric protein:100mg/dl Life threatening Arhythmia 	
Diabetes	- FBG: 110-139 mg/dl	- FBG: 140-249 mg/dl*	- HTN in fundus oculi - FBG: <u>></u> 250 mg/dl	 Urinary ketone body (+) Diabetic Retinopathy (+) 	
HLD	- TC: 220-249 mg/dl - TG: 150-299 mg/dl	- TC: 250 mg/dl* - TG: 300 mg/dl*			
Obesity	- BMI: 24.0 - 29.9	- BMI: 24.0 - 29.9 & LE joint damage (orth exam) - BMI: 30-35.0	- BMI: >35		
Note. BM	ll, body mass index; FB	G, fasting blood glucose; LE,	lower extremity		

Conditional Select Subsequent Screening: Blood Clot Risks


- In the first 6 weeks s/p orthopedic surgery, there is an estimated 100-fold
 f in risk of VTE³ secondary to the combination of <u>"endothelial</u> <u>damage"</u>and <u>"stasis"</u> (2 of 3 conditions of Virchow's Triad)
- However, current evidence suggests that use of a tourniquet in surgery ("stasis") does not seem to amplify this risk (1 fibrolytic effect post tourniquet)^{3,6,7}
- Surgery: application of up to 120 min of full occlusion with 2-3x pressure (given cuff width) during⁴
- BFR Post Op: significantly less risk of acquiring a VTE during or following the application of a brief (5-20 min), sub-occlusive pressure with exercise.⁴
- To date, no study has provided any evidence that BFR exercise amplifies markers associated with the coagulation system³⁻⁶

Sweetland 2009³, Bradner 2015², Madarame 2010³, Rolnick 2021⁴, Nakajima 2007⁵, Clark 2011⁶, Bond 2019⁷, Australian Institute of Sport CPG 2016⁸


Conditional Select Subsequent Screening: Blood Clot Risks

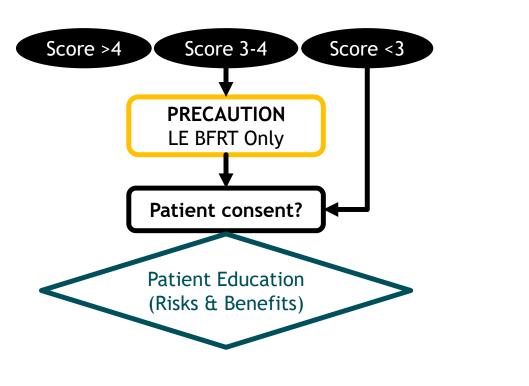
Virchow's Triad

- Describes the three broad categories of factors contributing to the risk of venous thrombosis:
 - Hemodynamic Changes/Stasis
 - Endothelial Injury
 - Hypercoagulability.

Kovačič 2019

Age >70 y/o Malignancy Cancer Therapy **Estrogen** Therapy Hormone Replacement Pregnancy Postpartum (6 mo) Thrombophilia Nephrotic Syndrome

(Active) Infection Anti-thrombin III deficit Protein S & C deficit IBS

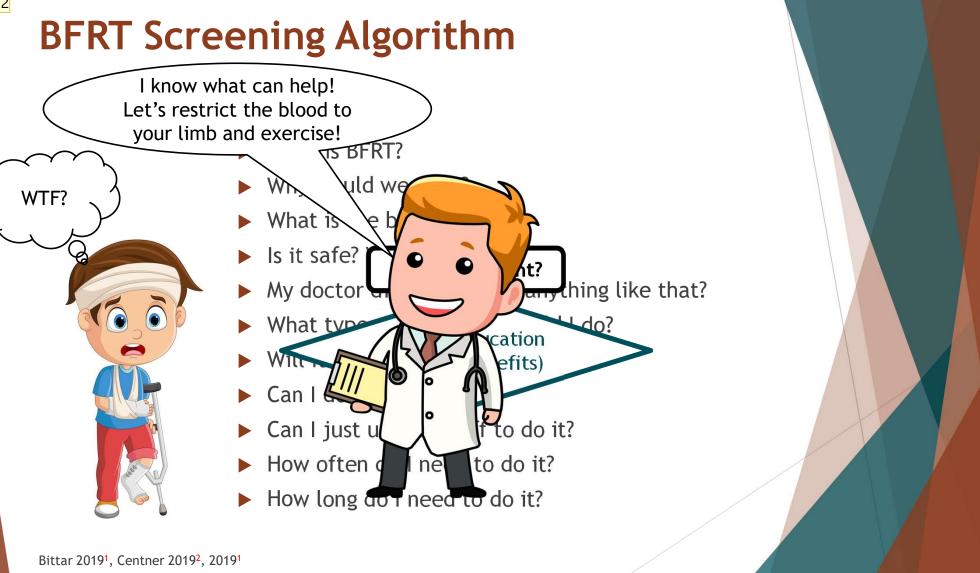

Kovačič 2019

Conditional Select Subsequent Screening: Blood Clot Risks

- In a surgical tourniquet setting, VTE is usually listed as a potential complication BUT a direct correlation remains unclear^{1,2}
- There have been case reports of DVT & PE however, risk remains low² AND with proper screening risk can be negligible^{1,2,4}
- Current Physical Therapy Practice Guidelines on DVT recommends both activity and intermittent pneumatic compression³
- The proposed screening questionnaire and algorithm incorporates the questions of *thrombophilia* and *hypercoagulability* as well as *other risk factors* contributing to Virchow's Triad.

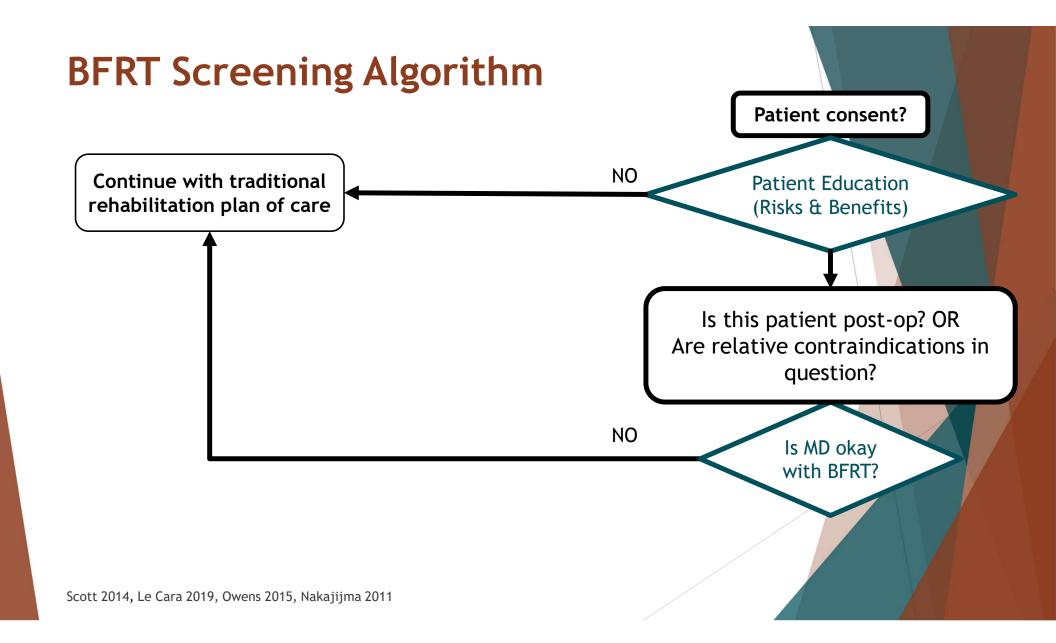
Bond 2019¹, Australian Institute of Sport BFR CPG 2016², Hillegass 2016³, Rolnick 2021⁴

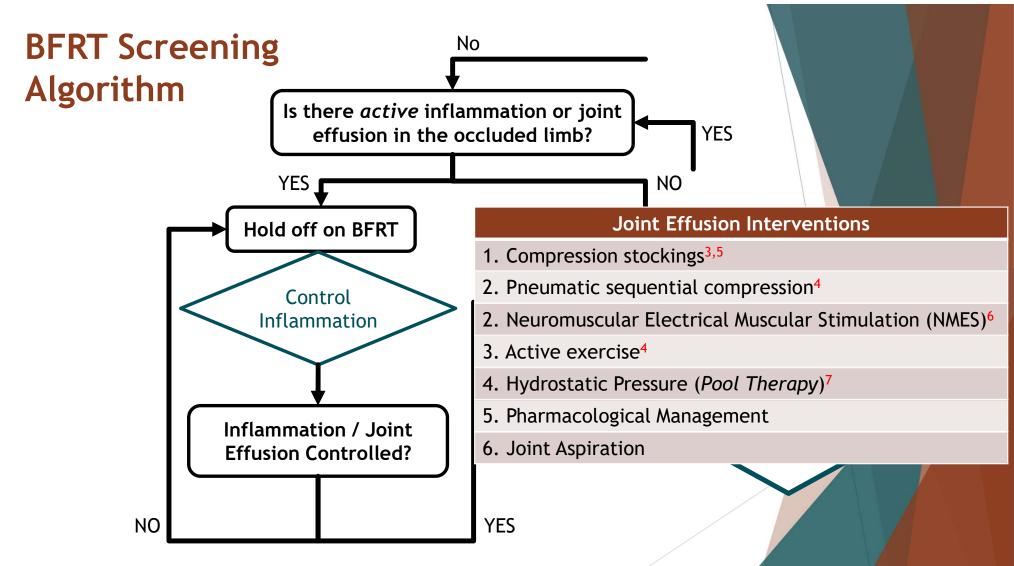
BFRT Screening Algorithm


Scott 2014, Le Cara 2019, Owens 2015, Nakajijma 2011

JM1

JM1 Add references


Jeanfavre, Michael, 1/11/2020



JM12 Add references

Jeanfavre, Michael, 1/11/2020

Bittar 2019¹, Centner 2019², Mooventhan 2014³, Sari 2019⁴, Tischer 2019⁵, Editz 2012⁶, Bamigboye 2007⁷

The Structured Process of BFR Implementation

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Screening	Cuff Application	Cuff Pressure	Exercise Stimulus	Exercise Parameters	Monitoring & Progression
Precautions & Contraindications	Location & Cuff Properties	Specific & Individualized Pressures	Type of Exercise	Dosage of Exercise	When & How to Progress

Location of the Cuff

What are pneumatic tourniquets?

- **Definition:** a **pneumatic tourniquet** is a medical device consisting of a pressure-regulating unit which can be operated manually or automatically, connecting tubing, and an inflatable cuff.
- **Purpose:** intended to reduce or totally occlude circulation to a patient's limb to enable a licensed healthcare practitioner to perform a therapeutic function.

Note that this definition covers pneumatic tourniquets intended *to restrict OR completely occlude blood flow* to a limb

• Pneumatic Tourniquet vs Blood Pressure Cuff

• For patient safety, the special design of tourniquet cuffs allows a user to safely and accurately apply a desired pressure level and gradient uniformly around a limb for a prolonged time period sufficient for performing a therapeutic function.

<u>McEwen 2024</u>

Why does the FDA regulate pneumatic tourniquets as medical devices?

- In the United States, pneumatic tourniquets (PT) are regulated as medical devices by the Food and Drug Administration (FDA)
- PT meet the "diagnose, cure, mitigate, treat or prevent disease" and "affect the structure or function of the body" clauses in the definition of a medical device¹ in section 201(h) of the Federal Food Drug & Cosmetic (FD&C) Act.

How does the FDA regulate pneumatic tourniquets?

Pneumatic tourniquets are regulated as Class I medical devices under 21 CFR 878.5910
 "Pneumatic Tourniquet" which requires the manufacturer to comply with specific regulations AND to maintain evidence that the device is safe and effective for its intended use and indications for use

Establishment Registration & Device Listing

FDA Home Medical Devices Databases

This database includes:

- · medical device manufacturers registered with FDA and
- medical devices listed with FDA

Note: Registration of a device establishment, assignment of a registration number, or listing of a medical device does not in any way denote approval of the establishment or its products by FDA.

Learn More ...

Search Database	😕 Help 🖲 Download Files
Establishment or Trade Name Owner/Operator Name Proprietary	Registration or FEI Number
Product Code	Device Name Establishment Type
Establishment State (U.S.) Quick Search	Clear Form Search

McEwen 2024

What **3 key questions** should a clinician ask prior to deciding whether to purchase a specific pneumatic tourniquet to restrict or occlude circulation?

- 1. Is the pneumatic tourniquet's manufacturer registered as an establishment with the FDA and has the manufacturer device listed the pneumatic tourniquet product with the FDA?
 - 1. Look on company website (often used for marketing)
 - 2. Look on <u>FDA Establishment Registrations and Device</u> <u>Listings Database</u>
 - 1. <u>https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRL/rl.cfm</u>
 - Contact manufacturer directly to request the "Established Registration Number and the description & device Listing Number" of the tourniquet's device listing

	J.S. F	OOD STRATIC	& DRUG		
Home	Food	Drugs	Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics

Establishment Registration & Device Listing

FDA Home O Medical Devices O Databases

New Search	Back To Search Results
Proprietary Name:	Suji BFR; Suji Pro
Classification Name:	GENERAL USE PNEUMATIC TOURNIQUET
Product Code:	QGX
Device Class:	1
Regulation Number:	<u>878.5910</u>
Medical Specialty:	General & Plastic Surgery
Registered Establishment Name:	SecondPerspective, Ltd.
Registered Establishment Number:	3021976945
Owner/Operator:	SecondPerspective Ltd. (t/a "Suji")
Owner/Operator Number:	10084329
Establishment Operations:	Specification Developer

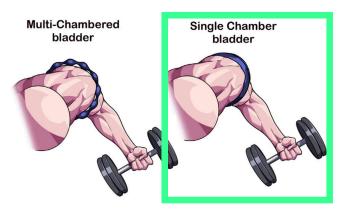
What **3 key questions** should a clinician ask prior to deciding whether to purchase a specific pneumatic tourniquet to restrict or occlude circulation?

2. Can the cuff pressure be individualized to the patient/client or user

 The cuff/system should allow for *specific* (1) *individualized* and (2) *limb specific*, Limb Occlusion Pressures

3. Can the cuff pressure be adjusted during (either manually or electronically) during the exercise

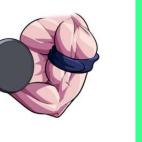
- The cuff/system should allow for either *manual or electronic* control of the pressure
- Pressure autoregulation is a *nice to have* (but not need to have feature of the cuff)


	J.S. F	OOD STRATIC	& DRUG		
Home	Food	Drugs	Medical Devices	Radiation-Emitting Products	Vaccines, Blood & Biologics

Establishment Registration & Device Listing

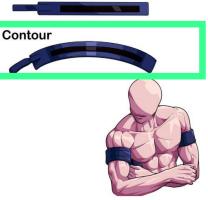
FDA Home
 Medical Devices
 Databases

New Search	Back To Search Results
Proprietary Name:	Suji BFR; Suji Pro
Classification Name:	GENERAL USE PNEUMATIC TOURNIQUET
Product Code:	QGX
Device Class:	1
Regulation Number:	<u>878.5910</u>
Medical Specialty:	General & Plastic Surgery
Registered Establishment Name:	SecondPerspective, Ltd.
Registered Establishment Number:	3021976945
Owner/Operator:	SecondPerspective Ltd. (t/a "Suji")
Owner/Operator Number:	10084329
Establishment Operations:	Specification Developer


Cuff Properties

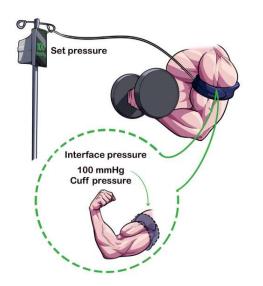
Multi-chambered cuffs:

- composed of sequential bladders that when inflated, leave regions where minimal compression occurs
- **the ability for the device to occlude arterial flow** making it **difficult to obtain a personalized pressure**
- The inability to occlude has been hypothesized to enhance safety during BFR exercise

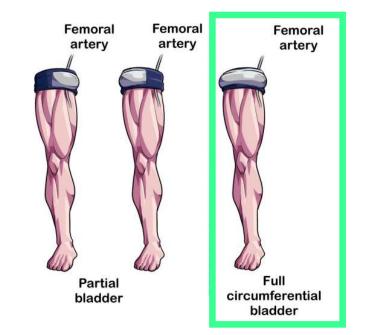


Autoregulation:

- design feature that accommodates for the changes in limb circumference because of muscular contraction.
- In current available devices, the BFR cuff is attached to a pneumatic air compressor via an air tubing that adjusts according to the pressure sensed at the cufflimb interface.
- ► The speed at which this adjustment occurs varies across devices, making it a cuff-specific feature.
- Autoregulation may enhance the acute safety of BFR exercise


Straight

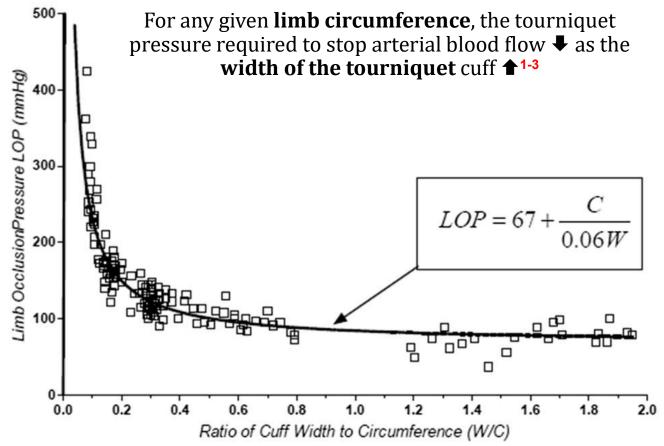
Contoured cuffs:


- provide a ★ secure fit due to the conical shape of the limb (compared to a straight cuff)
- **1** the safety profile of BFR exercise

Cuff Properties

Set Pressure = Interface Pressure

- **set pressure:** the pressure that the pneumatic cuff is inflated to by the clinician
- **interface pressure** the pressure applied to the limb from the cuff.
- Cuffs that can maintain a **similar set and interface pressures** may enhance acute safety of BFR exercise

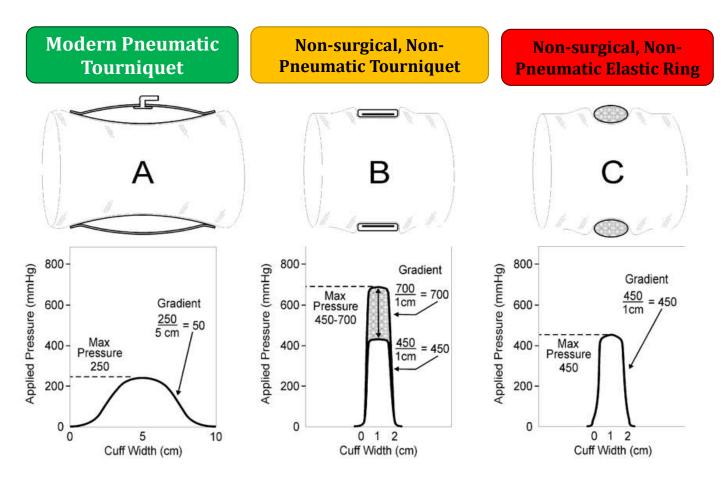

Circumferential Bladder

- The bladder extends the length of the cuff (Right Image)
- Partial bladder does NOT cover the entirety of the length of the cuff
- Circumferential bladder ensures homogenous circumferential pressure, efficacy and ensuring sufficient target vessel occlusion

Other Considerations:

- Nylon vs Elastic
- Wide vs narrow
- Personalized pressure calibration

Practical/Clinical Application – Cuff Specifications



Additional variables that can influence limb occlusion pressures:

- Systolic Blood Pressure⁷
- Body position⁴
- Sex/Race⁵
- Limb Density
- Laterality⁶

McEwen 2019¹, Graham 1993², Weatherholt 2019³, Leonneke 2015, Hughes 2018⁴, Jessee 2016⁵, Evin 2020⁶, Leonneke 2015⁷

Practical/Clinical Application – Cuff Specifications

- Each tourniquet was selected and applied as recommended by the respective manufacturer to stop arterial blood flow in an upper limb.
- Higher levels of pressure and higher-pressure gradients are associated with higher probabilities of patient injuries.
- Risk of nerve related injuries increase with pressure gradients
- Higher demand pressures associated with higher CV demand
- Complete arterial flow effectiveness of BFR

McEwen 2019, Graham 1993

Summary of Cuff Selection

- The cuff always goes on the most proximal location of the limb:
 - Lower Extremity: as close to the groin as possible
 - Upper Extremity: as close to the axilla as possible
- FDA Registered (C.Y.A.)
- Pneumatic tourniquet, single chamber, circumferential bladder, curved cuff
- Sufficient width Legs (9 -18.5 cm), Arms (5-12 cm)¹
 - wider cuffs (13.5 cm) restrict blood at lower pressures vs narrow cuffs (5 cm)²
 - Arms: narrow cuffs may limit normal/required ROM & muscle hypertrophy stimulus may be attenuated directly below the cuff³
 - Legs: wider cuffs some individuals did NOT reach arterial occlusion using narrow cuffs on Legs at pressure up to 300 mmHg²
- Autoregulation a nice to have but not a need to have if pressures are assessed post sets.

Scott 2015, Loenneke 2012, Kacin 2011

Practical Application – Cuff Selection

Practical/Clinical Applications – Cuff Pressures

- Standardize restrictive pressures relative to brachial systolic blood pressure^{11, 45}
 - NO evidence to suggest that this provides a good estimate of BFR to the lower limbs⁸⁷
 - bSBP NOT able to explain additional variance in estimation of Lower Body Arterial occlusion pressures⁹⁰
- Lower Extremities
 - 80% total arterial restriction → hypertrophic & Strength responses similar to traditional high load training¹¹
 - 50% total arterial restriction → maximize EMG & ↑ acute decrements in torque during & following knee extension exercise (comparable (50% = 60% occlusion)⁹²
 - Maximize acute muscle swelling & blood lactate responses⁸⁷
 - VAS: 7/10 (pressure with no pain) = occluded venous return without stopping arterial inflow⁹³
 - Limited difference in ratings of discomfort during exercise across a variety of pressures (perception may NOT be best estimate of actual restriction⁸⁷

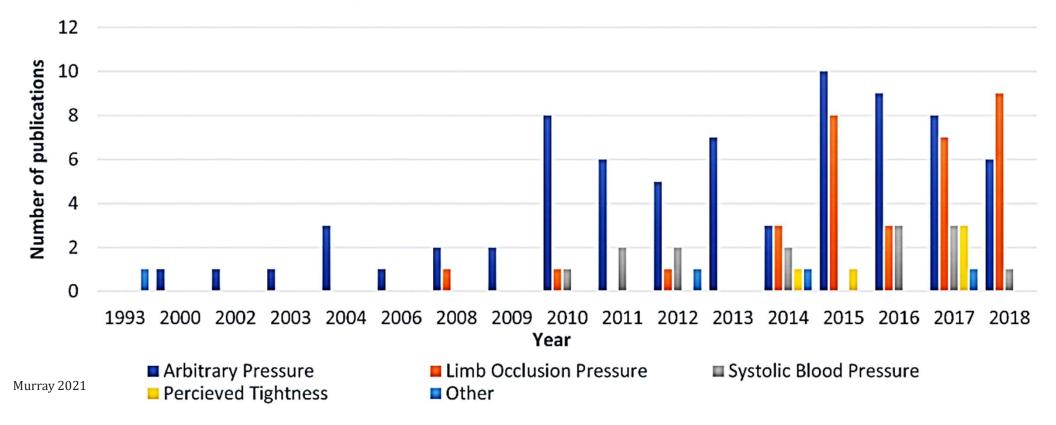
Practical/Clinical Applications – Cuff Pressures

- ~60% Complete Arterial Occlusion Pressure can be achieved in LE with correlating pressure with thigh circumference⁹⁰
- Anatomical Location: 33% distance from inguinal crease to superior border of patella

Circumference	Pressure
<u><</u> 50 cm	120 mmHg
51-55 cm	150 mmHg
56-59 cm	180 mmHg
<u>≥</u> 60 cm	210 mmHg

Most Important Factors to consider	
for optimal pressure during BFR	

- 1. Width of Cuff
- 2. Circumference of Limb
- 3. Arterial Occlusion Pressure of Limb


The Structured Process of BFR Implementation

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Screening	Cuff Application	Cuff Pressure	Exercise Stimulus	Exercise Parameters	Monitoring & Progression
Precautions & Contraindications	Location & Cuff Properties	Specific & Individualized Pressures	Type of Exercise	Dosage of Exercise	When & How to Progress

Practical Application – Cuff Pressure

Approaches to determining occlusion pressure for blood flow restricted exercise training: Systematic review James Murray (1)^{a,b}, Hunter Bennett (1)^{a,b}, Terry Boyle (1)^{a,c}, Marie Williams (1)^{a,d} and Kade Davison (1)^{a,b}

Number of studies published each year for each calculation method

Clinical Application – Cuff Pressure

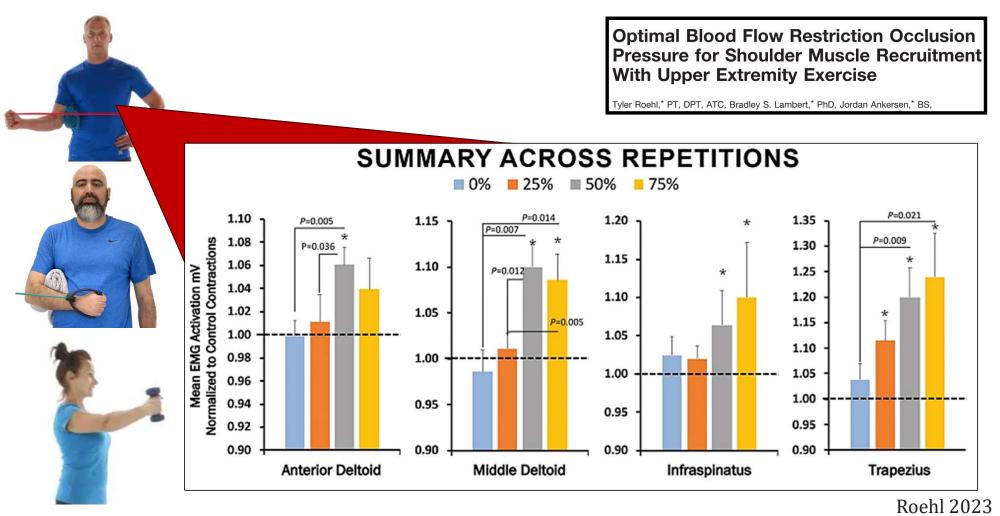
Optimal Blood Flow Restriction Occlusion Pressure for Shoulder Muscle Recruitment With Upper Extremity Exercise

Tyler Roehl,* PT, DPT, ATC, Bradley S. Lambert,* PhD, Jordan Ankersen,* BS,

Population: 15 Healthy adults Study Design: Non-RCT Setting: Controlled laboratory study Outcomes:

- Muscle activation
- repetitions to failure
- discomfort levels

Exercise Protocol


- 4 Sessions, performing 3 common rotator cuff exercises
 - Standing cable ER & IR
 - Scaption
- Sets & reps: 1 set "to failure"
- Intensity: 20% 1 RM

Cuff Pressures: 0%, 25%, 50%, 75% LOP (order randomized)

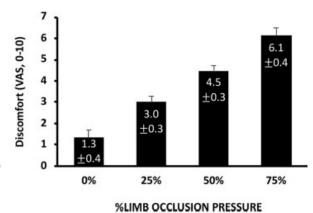
Roehl 2023

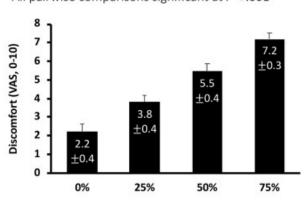
Clinical Application Cuff Application

Cuff Application

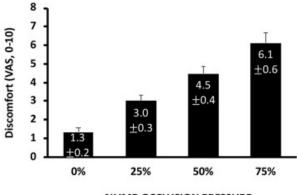
Optimal Blood Flow Restriction Occlusion Pressure for Shoulder Muscle Recruitment With Upper Extremity Exercise

Tyler Roehl,* PT, DPT, ATC, Bradley S. Lambert,* PhD, Jordan Ankersen,* BS,


All pairwise comparisons significant at P < .001

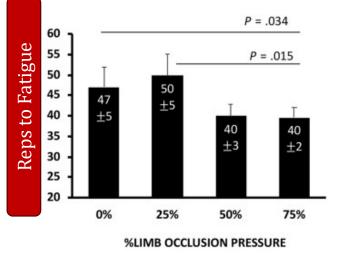


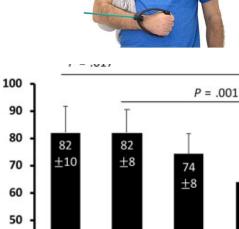
All pairwise comparisons significant at P < .01



All pairwise comparisons significant at P < .001

%LIMB OCCLUSION PRESSURE

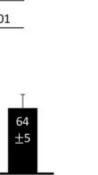

%LIMB OCCLUSION PRESSURE


Cuff Application

Optimal Blood Flow Restriction Occlusion Pressure for Shoulder Muscle Recruitment With Upper Extremity Exercise

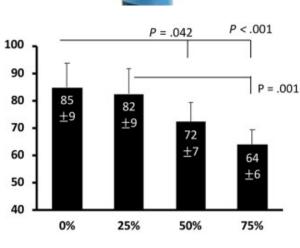
Tyler Roehl,* PT, DPT, ATC, Bradley S. Lambert,* PhD, Jordan Ankersen,* BS,

25%


50%

%LIMB OCCLUSION PRESSURE

Repetitions to Fatigue


40

0%

75%

Repetitions to Fatigue

Cuff Pressure

Optimal Blood Flow Restriction Occlusion Pressure for Shoulder Muscle Recruitment With Upper Extremity Exercise

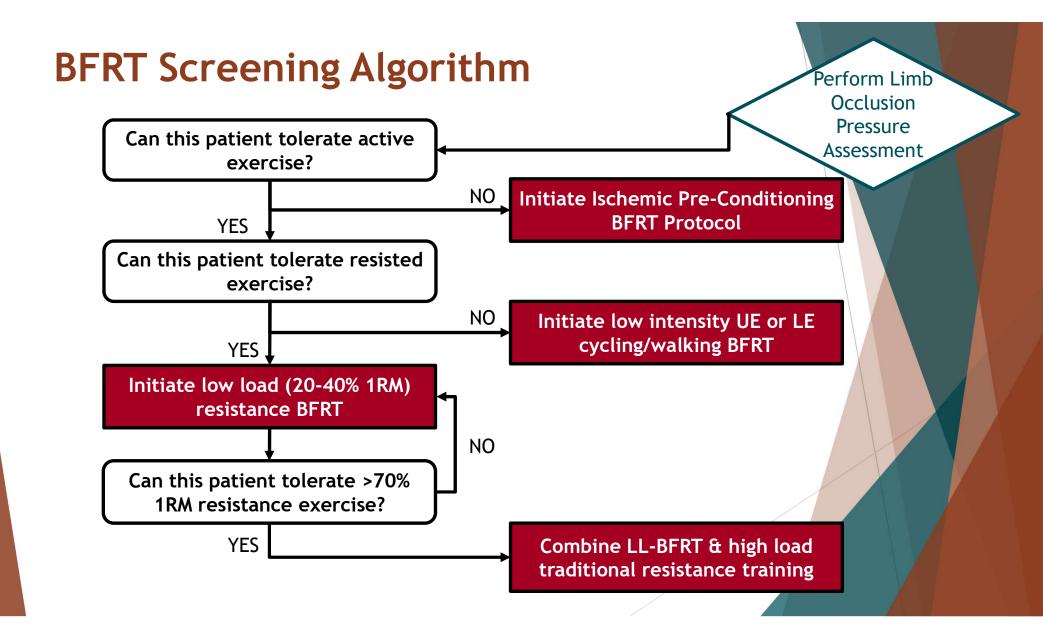
Tyler Roehl,* PT, DPT, ATC, Bradley S. Lambert,* PhD, Jordan Ankersen,* BS,

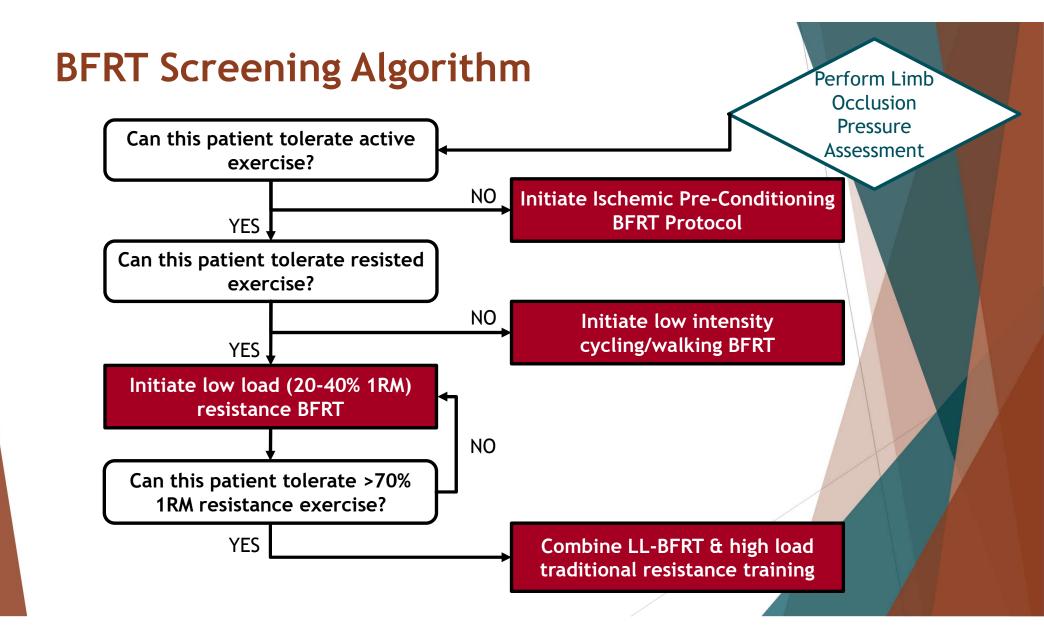
Conclusion:

- There is a linear \clubsuit in EMG with \clubsuit in % LOP used
- there may be an element of diminishing returns at >50% LOP for targeted musculature of the exercises studied with additional, and potentially *unwanted*, co-activation of certain muscle groups, **ultimately limiting efficacy past** this occlusion stimulus when considering discomfort or total achievable exercise volume

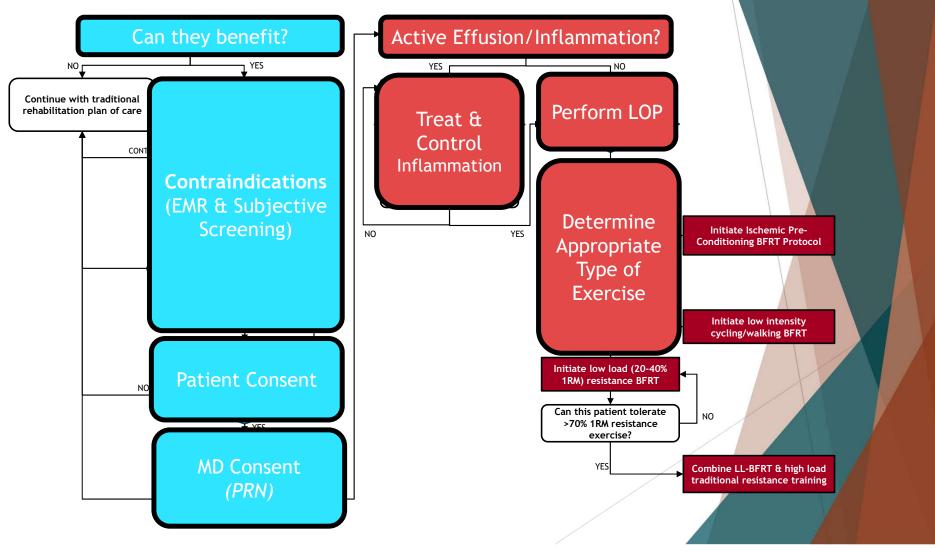
BFRT Screening Algorithm

Steps	Description	Images
1	Have the patient lie supine	
2	Place cuff around upper thigh	
3	Palpate dorsalis pedis (or posterior tibial pulse) and mark with dry erase marker	
4	Connect sphygmomanometer with valve closed	- DIVING
5	Place ultrasound (US) gel over marked artery	*
6	Turn on doppler (ensure volume is up) and doppler head lightly over US gel	KAAA
7	Begin inflating the cuff	
8	The limb occlusion pressure (LOP) is indicated once arterial pulse disappears	


La Cara 2019


BFRT Screening Algorithm

Steps	Description	Images
1	Have the patient lie supine	
2	Place cuff around upper arm	A A A A A A A A A A A A A A A A A A A
3	Palpate radial pulse and mark with dry erase marker	Ū,
4	Connect sphygmomanometer with valve closed	
5	Place ultrasound (US) gel over marked artery	
6	Turn on doppler (ensure volume is up) and doppler head lightly over US gel	
7	Begin inflating the cuff	
8	The limb occlusion pressure (LOP) is indicated once arterial pulse disappears	


La Cara 2019

Summary - BFRT Screening Algorithm

Exercise Prescription of Blood Flow Restriction

Objective #5: How do I *effectively* apply/use BFR in clinic?

- 1. Occlusion parameters
- 2. Exercise parameters
- 3. Progression criterion

Optimal Prescription & Progression

- 1. Occlusion parameters
- 2. Exercise parameters
- 3. Progression criterion

The Structured Process of BFR Implementation

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Screening	Cuff Application	Cuff Pressure	Exercise Stimulus	Exercise Parameters	Monitoring & Progression
Precautions & Contraindications	Location & Cuff Properties	Specific & Individualized Pressures	Type of Exercise	Dosage of Exercise	When & How to Progress

Practical/Clinical Application - Cuff Specifications

Occlusion Variable Recommended Parameters

Comment

Scott 2014

Practical/Clinical Application - Exercise Specifications¹

Variable
Type of Exercise
Frequency
Exercise Intensity
Volume
Rest ²
Duration

Tempo

Scott 2014¹, Heitkamp 2015², Loenneke 2012³, Slyzs 2016⁴, Inagaki 2011⁵

The Structured Process of BFR Implementation

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Screening	Cuff Application	Cuff Pressure	Exercise Stimulus	Exercise Parameters	Monitoring & Progression
Precautions & Contraindications	Location & Cuff Properties	Specific & Individualized Pressures	Type of Exercise	Dosage of Exercise	When & How to Progress

Safety & Side Effects – Basic BFR Principles

Best Practices are as follows:

- **1. Confirm No Contraindications** for 'normal exercise' → PAR-Q
- **2. Hemodynamically Unstable Patients** (slide 62, 63) should NOT partake in BFR Training
 - Exception: 'expert' clearance has been provided
- 3. Thrombotic Diseased Patients are Contraindicated
 - Believed to be reason why serious complications have been seldom occurred until now
 - Rheomatologic investigations after BFR have shown NO evidence for increased risk of thrombosis⁸³
- 4. Explain **Petechial Hemorrhage Risk –** prior to initiation of training (especially UE)
- 5. Individualize training to subjects' physical capacity & condition
- 6. Build Relationship & Trust with Patient

Safety & Side Effects – Basic BFR Principles

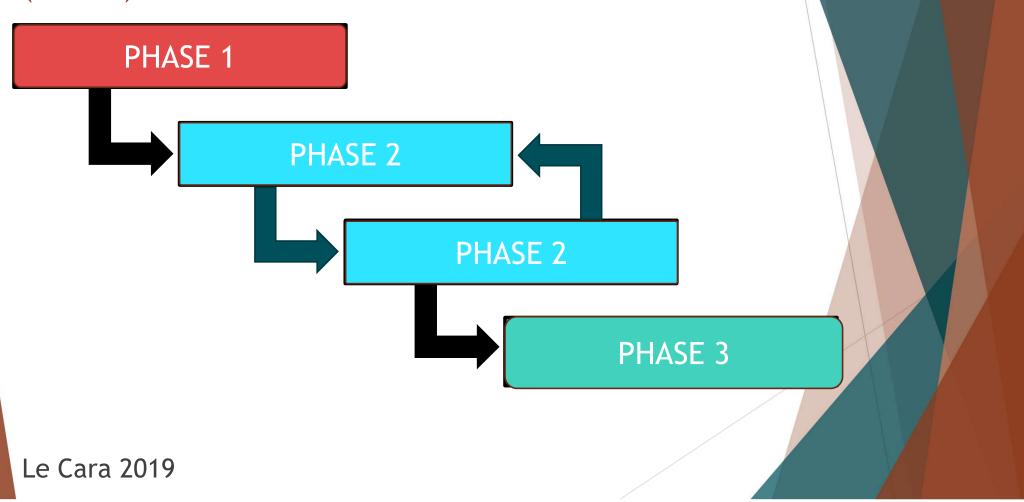
7. Pay Attention to Prodromal Symptoms (syncopy)

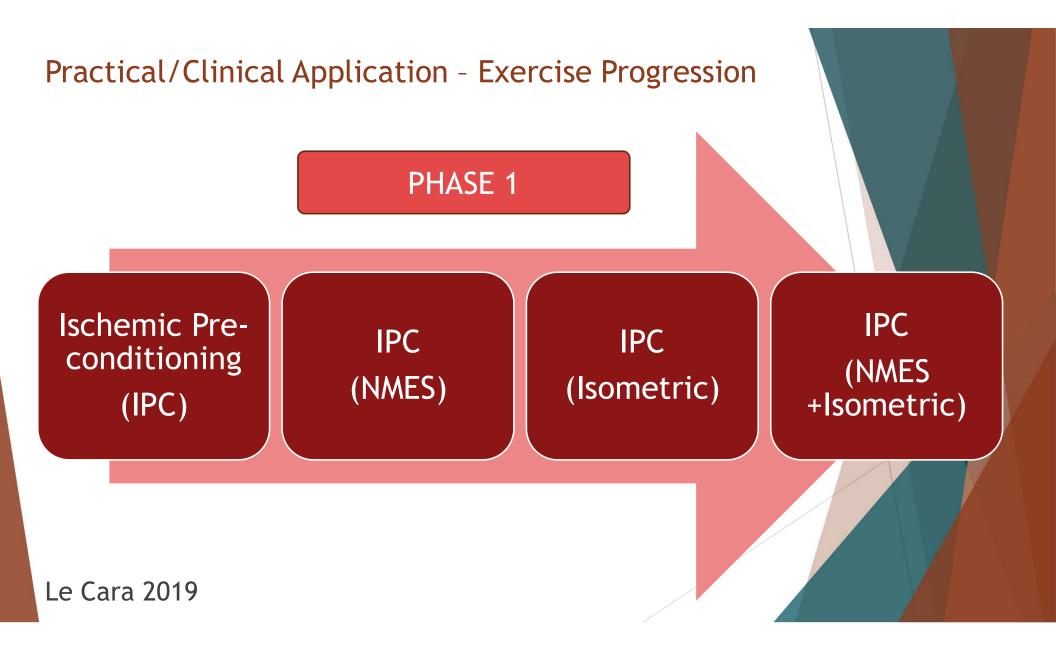
- faintness, dizziness, or light-headedness
- 8. Caution: Older (>65), Bedridden, Postoperative Patients (DVT risk)
- 9. AED Available

10. SHORT Term and LOW intensity Loads

- High Intensity Loads has little effect, but is may be rather dangerous
- Long duration (UE: >15 min, LE: >30 min) blood flow restriction should be avoided

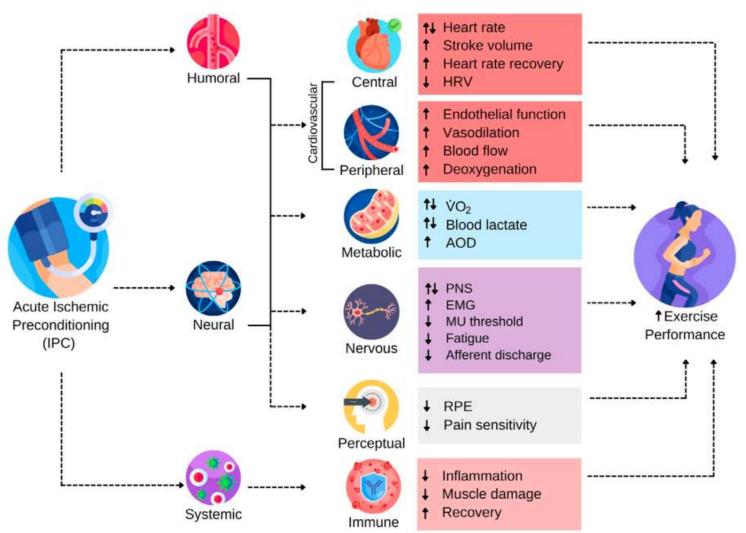
11. If unsure about medical condition seek specialist consult

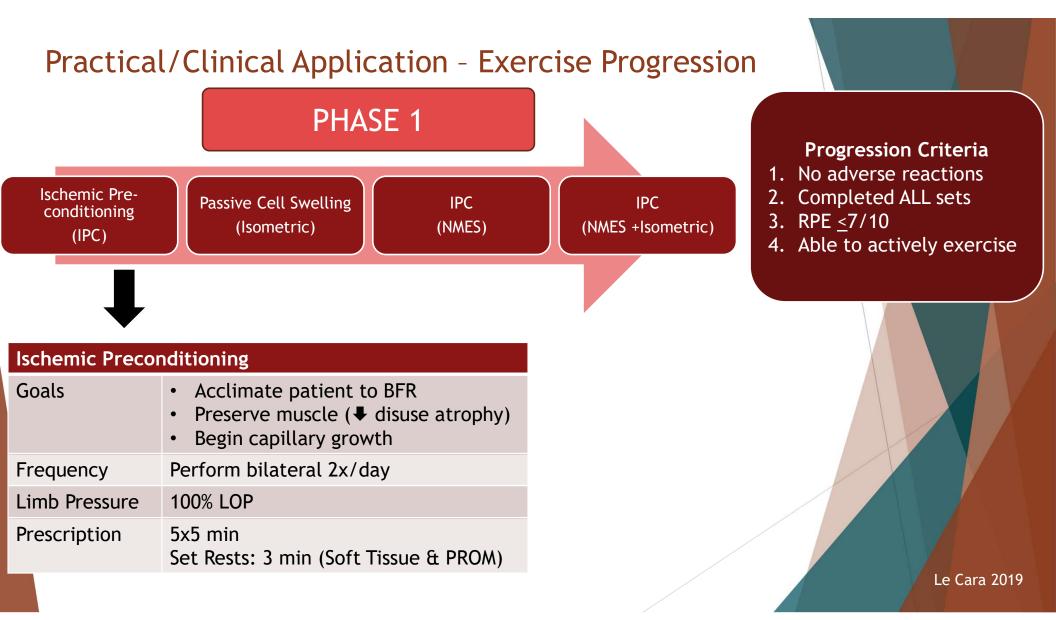

Practical Application – When to deflate?

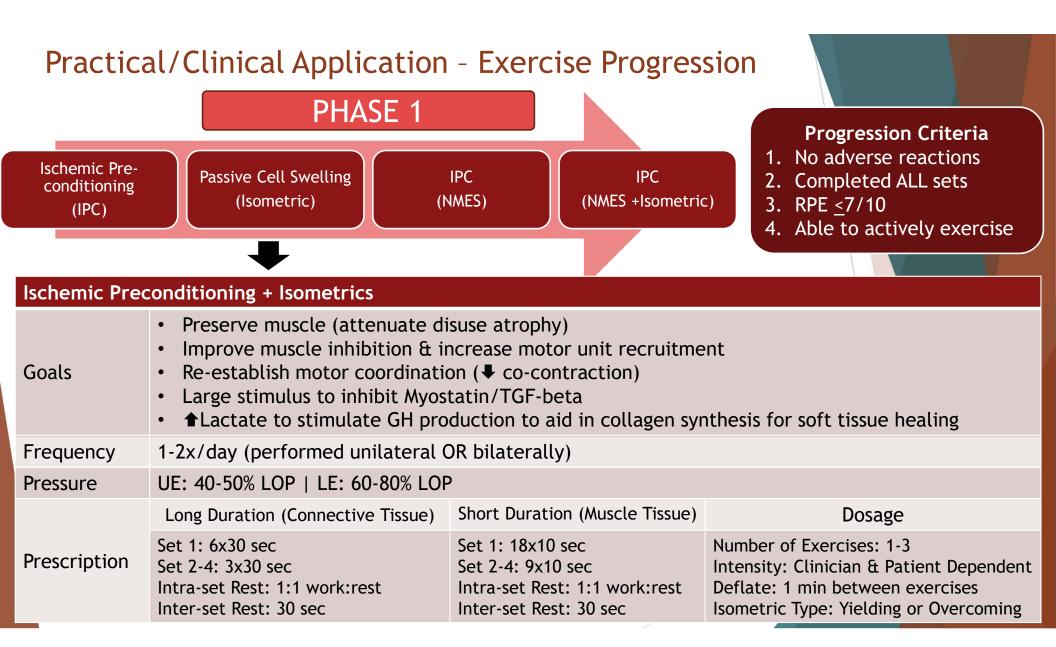

- Development of ventricular or atrial arrhythmias.
- Onset of chest pain/discomfort, or other symptoms, suggestive of myocardial ischemia.
- Dizziness, confusion, deteriorating balance, or other significant neurological symptoms.
- □ Paleness or cyanosis.
- □ Vomiting, nausea, or feeling generally unwell.
- □ ↓ in SBP from rest < 10 mmHg in the absence of symptoms.</p>
- □ SBP \ge 250 mmHg &/or DBP \ge 115 mmHg.

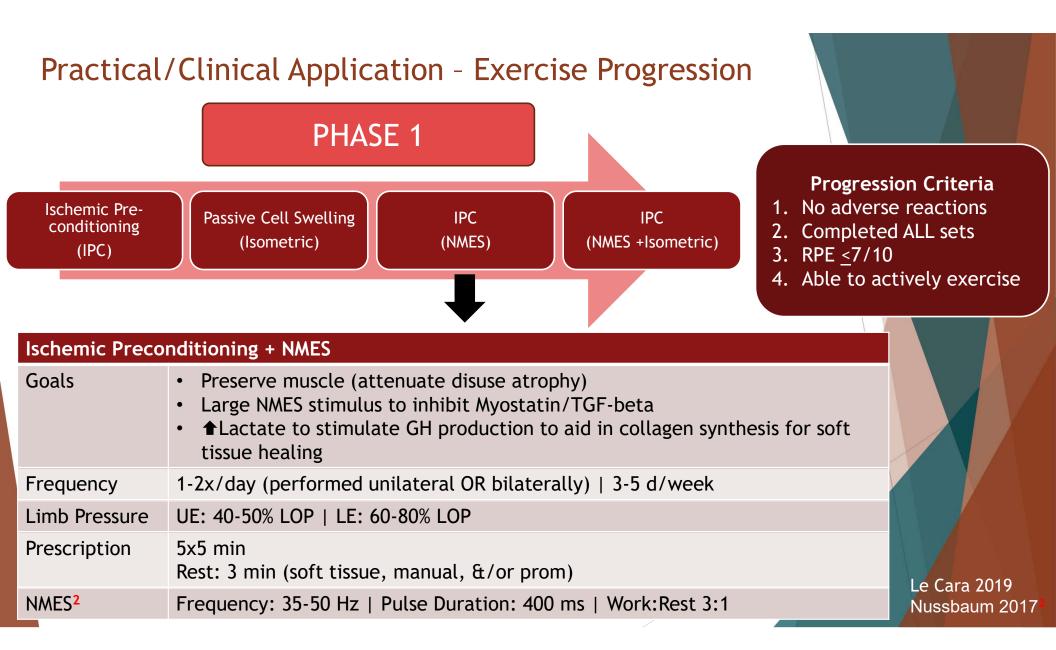
- Exhaustion or fatigue (malaise), sometimes persisting for days, that is out of keeping with the person's usual response to exercise at a given intensity.
- □ Swelling and shortness of breath.
- Skin of the affected limb that is too hot or cold to touch.
- □ Increased/excessive pain in the affected limb.
- □ Excessive discoloration of the affected limb.
- □ Subject requests to stop.

Nascimento 2022


Practical/Clinical Application - Exercise Specifications (cont'd)




Ischemic Preconditioning

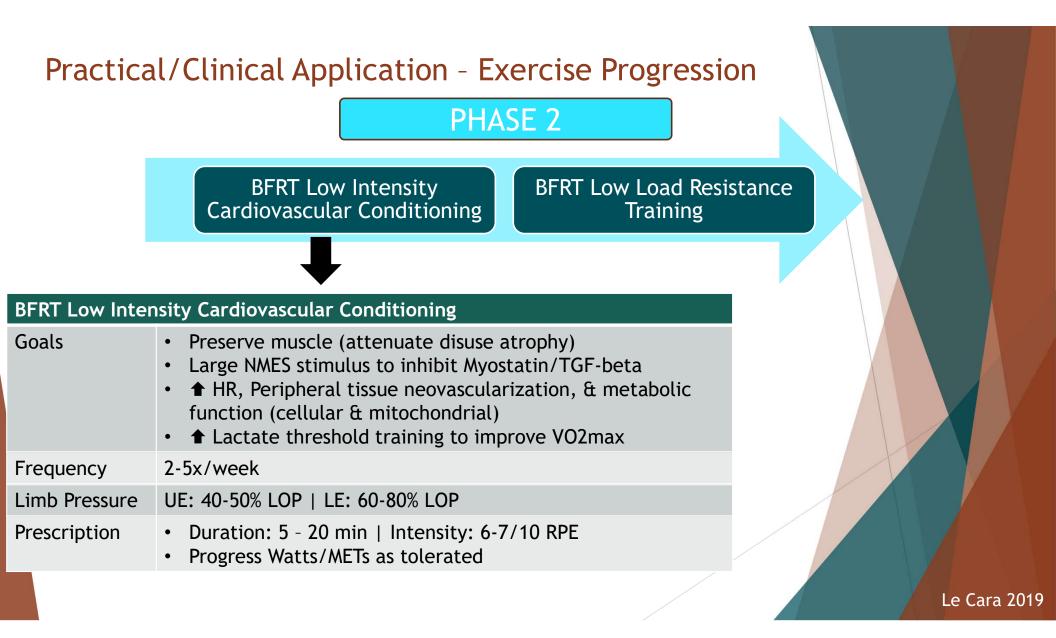

- The Range of Reported Potential Triggers and Subsequent Responses Contributing to Ergogenic Effects of IPC.¹
- Arrows indicate directionality of documented changes in the literature
- Muscle damage following exercise & recovery²
- Preservation of lean tissue during immobilization⁴
- Improves maximal performance in highly trained swimmers³

O'Brien 2022¹, Franz 2018², Jean-St-Michel 2011³, Kubota 2008⁴

Practical/Clinical Application - Exercise Progression

PHASE 1

Progression Criteria
1. No adverse reactions
2. Able to complete ALL sets/reps
3. RPE <7/10
4. Able to actively exercise</pre>

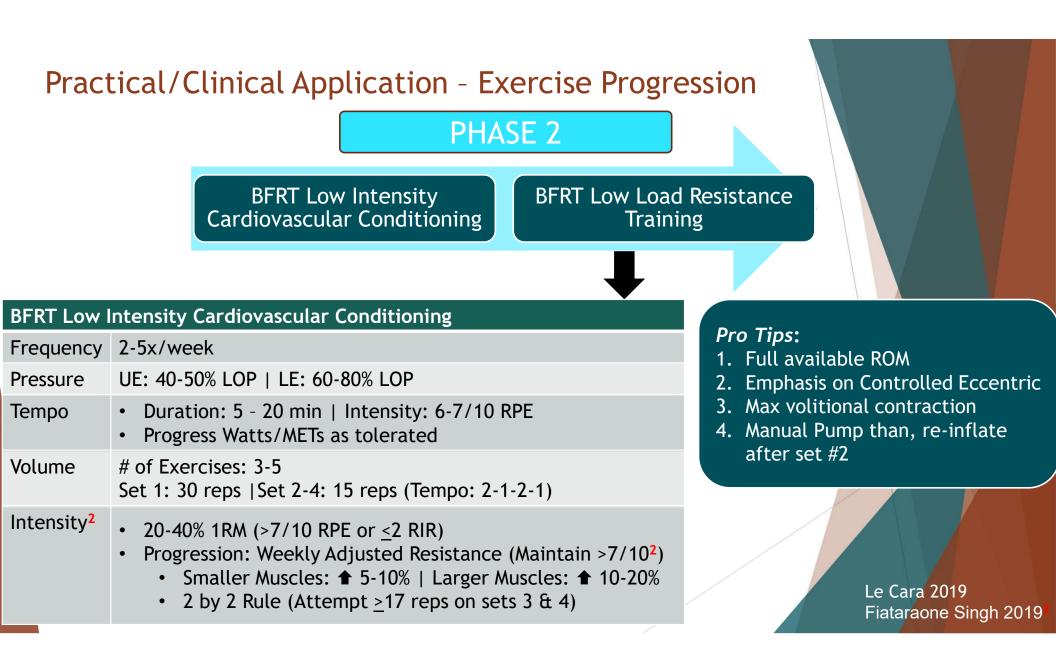

Practical/Clinical Application - Exercise Progression

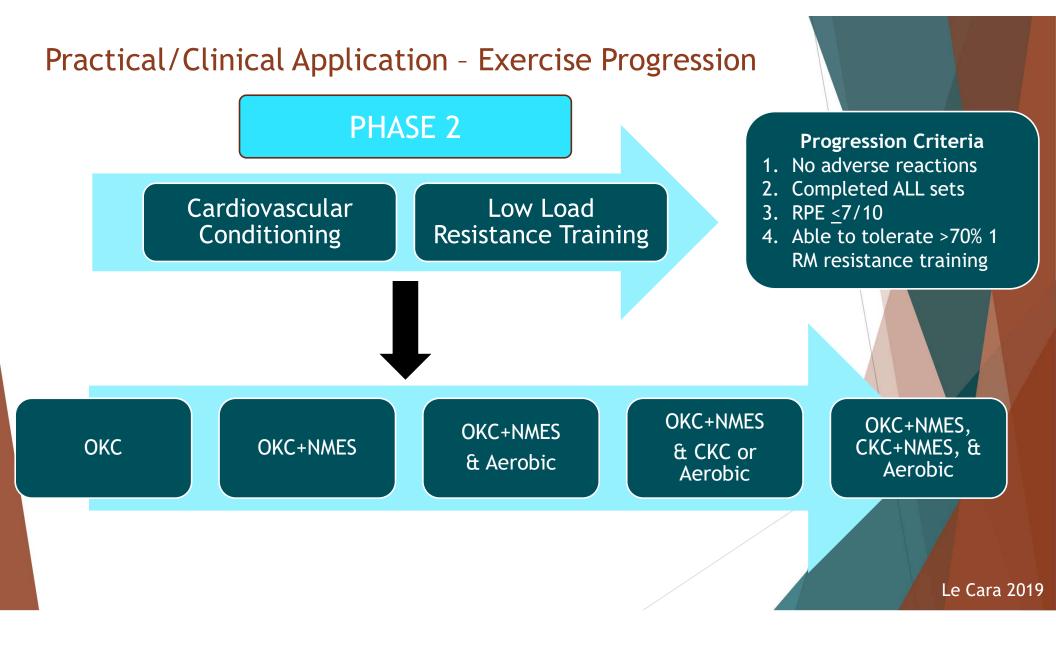
PHASE 2

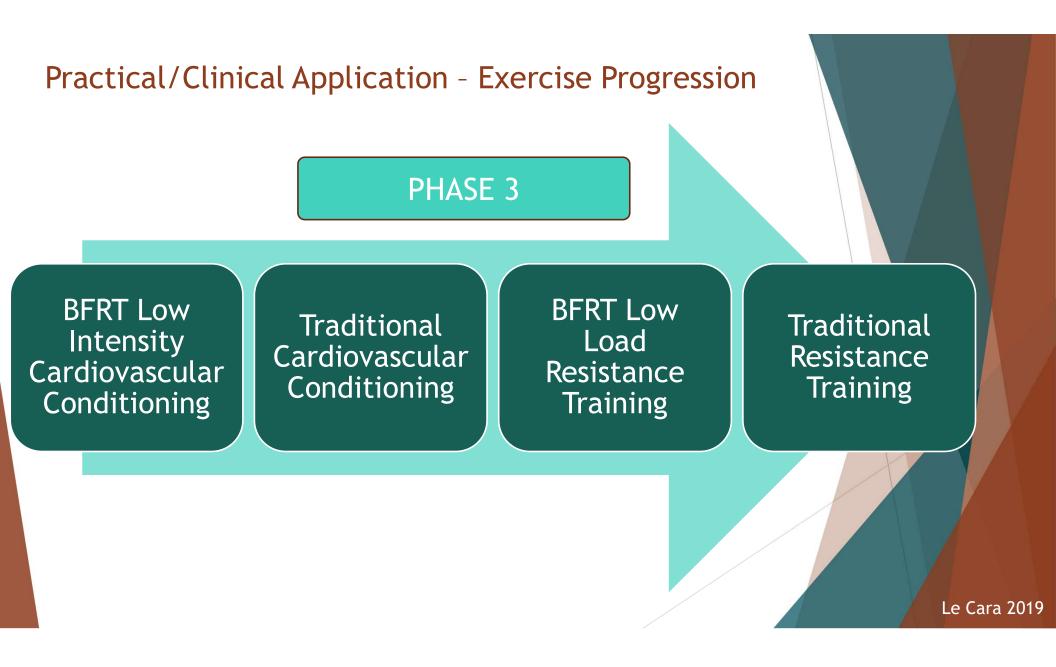
BFRT Low Intensity Cardiovascular Conditioning

BFRT Low Load Resistance Training

Le Cara 2019





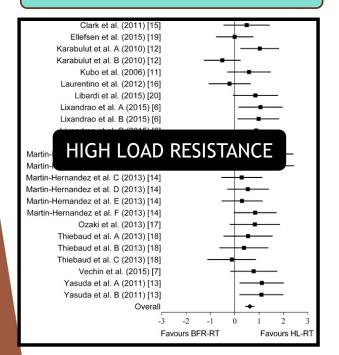

- Preserve muscle (attenuate disuse atrophy)
- Auscle inhibition & Amotor unit recruitment
- Re-establish motor coordination (↓ co-contraction)
- Large stimulus to inhibit Myostatin/TGF-beta
- 1 Lactate to stimulate GH production to aid in collagen synthesis for soft tissue healing

Le Cara 2019

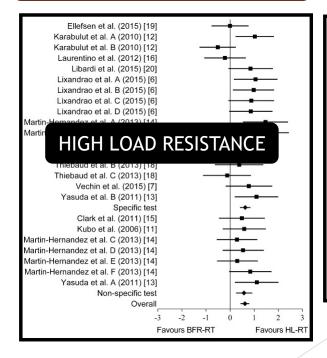
• Tolerance to active ROM, internal load, & external resistance

PHASE 3

SYSTEMATIC REVIEW

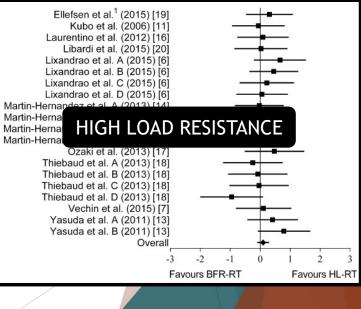

Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis

Manoel E. Lixandrão¹ · Carlos Ugrinowitsch¹ · Ricardo Berton¹ · Felipe C. Vechin¹ · Miguel S. Conceição¹ · Felipe Damas¹ · Cleiton A. Libardi² · Hamilton Roschel¹


LIxandrao et al 2017

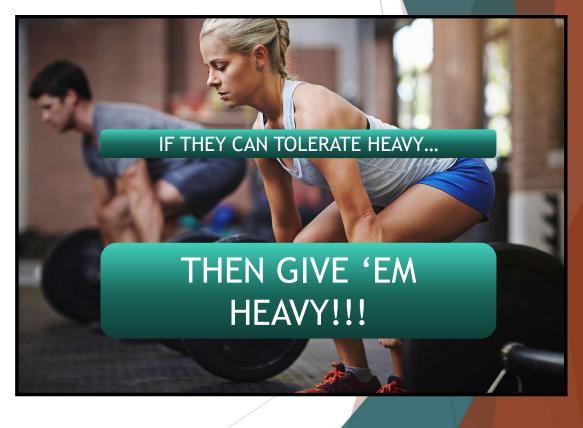
Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis

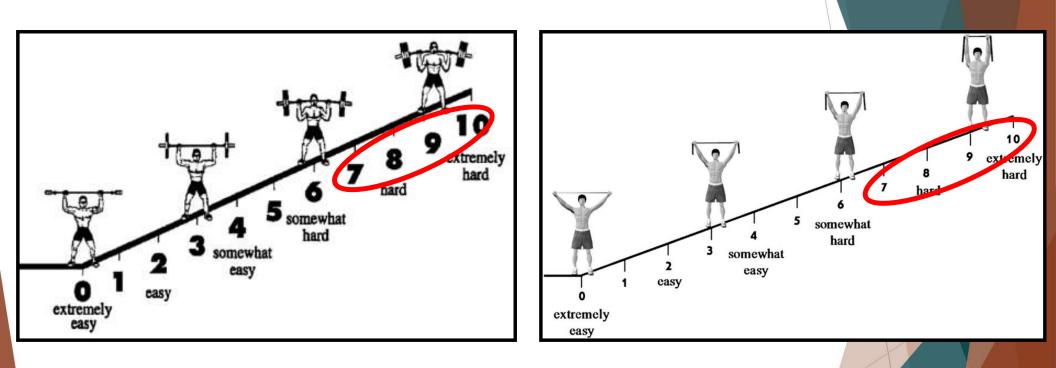
STRENGTH ADAPDATIONS



MUSCLE STRENGTH

HYPERTROPHY


PHASE 3


LIxandrao et al 2017

PHASE 3

Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis

LIxandrao et al 2017²⁰¹⁸

Robertson 2001, Colado 2012, Colado 2014, Morishita 2018

RPE*	What it feels like	Repetitions in reserve**
10	Your absolute limit	0
9.5	You could maybe add a couple pounds to the bar	0
9	Very close to your max	1
8.5	Where you typically end a set when you're pushing yourself hard	1-2
8	Where you typically end a set when you're feeling strong	2
7	Where you end a set when you're trying to leave some- thing in the tank (or when you just don't have it that day)	3
5-6	Warmup sets	4-6
<mark>3-4</mark>	General warmup	Too many to count
1-2	Anything more strenuous than watching TV	Infinite

Zourdos 2016

Actual RPE	Assigned RPE range 6–8 Increase load by 20%		
1			
2	Increase load by 16%		
3	Increase load by 12%		
4	Increase load by 8%		
5	Increase load by 4%		
6	Participant choice		
7	Participant choice		
7.5	Participant choice		
8	Participant choice		
8.5	Decrease load by 2%		
9	Decrease load by 4%		
9.5	Decrease load by 6%		
10	Decrease load by 8%		

Helms 2018

IF: patient exceeds target rep by 2 reps on final set on 2 consecutive exercise bouts

THEN: progress resistance

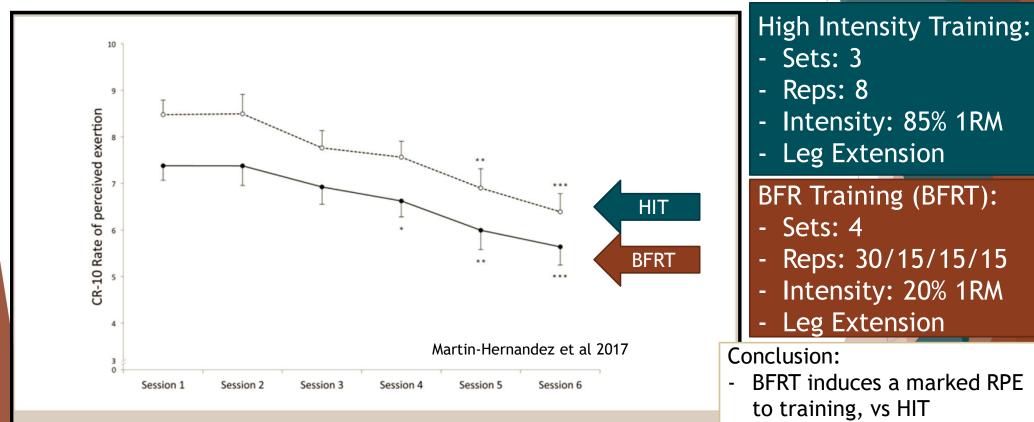
Description of the athlete*	Body area exercise	Estimated load increase [†]
Smaller, weaker, less trained	Upper body	2.5-5 pounds (1-2 kg)
	Lower body	5-10 pounds (2-4 kg)
Larger, stronger, more trained	Upper body	5-10+ pounds (2-4+ kg)
	Lower body	10-15+ pounds (4-7+ kg)

*The strength and conditioning professional will need to determine which of these two subjective categories applies to a specific athlete.

[†]These load increases are appropriate for training programs with loadvolumes of approximately three sets of 5 to 10 repetitions. Note that the goal repetitions per set remain constant as the loads are increased.

		it cala tame c il	riounus ut.
Thera-Band® Band/Tubing Color	Increase from Preceding Color at 100% Elongation	100% Elongation	200% Elongation
Thera-Band Tan	•	2.4	3.4
Thera-Band Yellow	25%	3.0	4.3
Thera-Band Red	25%	3.7	5.5
Thera-Band Green	25%	4.6	6.7
Thera-Band Blue	25%	5.8	8.6
Thera-Band Black	25%	7.3	10.2
Thera-Band Silver	40%	10.2	15.3
Thera-Band Gold	40%	14.2	21.3

Represents typical values. All products not available in all colors.


Baechle 2008

Resistance in Pound

Number of Repetitions Performed	Percent of 1-Repetition Maximum	Multiply Weight Lifted By:
1	100	1.00
2	95	1.05
3	93	1.08
4	90	1.11
5	87	1.15
6	85	1.18
7	83	1.20
8	80	1.25
9	77	1.30
10	75	1.33
11	70	1.43
12	67	1.49
15	65	1.54

Haff 2015

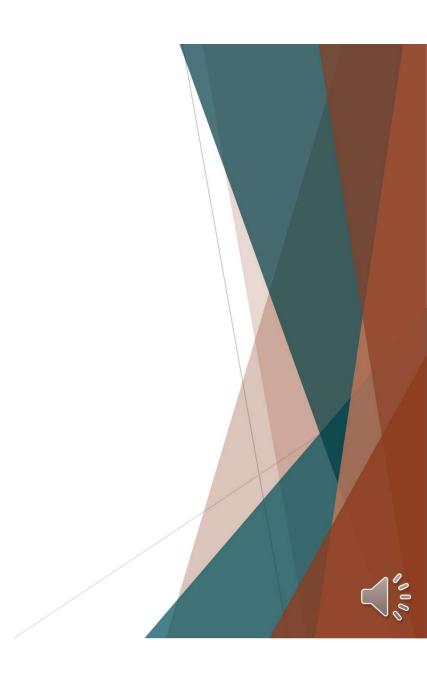
Practical/Clinical Application - RPE Adaptation

may not limit the

application of BFRT to

highly motivated individuals

Figure 1. Ratings of perceived exertion (RPE) values after each session of blood flow restriction training (BFF and high-intensity training (HIT). Each session RPE is expressed as the average RPE of all sets. Values are mean *SE*. *, **, *** significantly different from session 1 ($p \le 0.05$, p < 0.01, p < 0.001, respectively).


Practical/Clinical Application

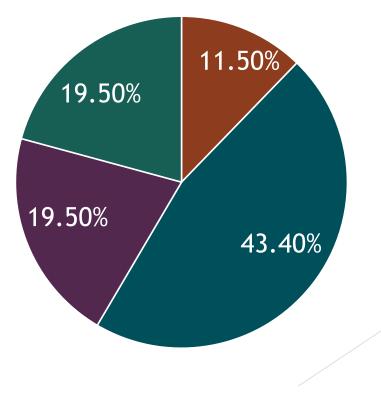
Clinical Outcomes

- Circumference of thickest portion of limb segment
- Force production (i.e. strength)
- Work Capacity (i.e., total work via fatigue assessments)
- Rate of force development (i.e., isometric strength)
- Biofeedback / Surface EMG
- Serial imaging
- Patient specific physical performance measure
- Functional Outcome Measures

The Limitations of BFR

Limitations of BFR

- 1. NOT superior to Heavy Load Resistance Training
- 2. Use of non-FDA Regulated Cuffs
- 3. Poor prescription practices
- 4. Effects of chronic BFR utilization unknown
- 5. Methodology of study design (risk of bias & conflicts of interest)


The Limitations of BFR: BFR Cuff Selection

The Limitations of BFR: Poor Prescription

- N = 250
- Strength & Conditioning Coaches
- Sports Scientists
- Physiotherapists
- Researchers
- Doctors

Factors Determining BFR Cuff Pressure

- Limb Occlusion Pressure
- Literature Values
- Limb Circumference

 Patients Brachial Blood Pressure

Patterson 2018

Limitations of BFR: Poor Prescription

 Occlusion pressure, intensity of training, number of sets and duration of a training unit remain unclear (Heitkamp 2015)

	0	50	100	150	200
< 5 minutes				2	
5-10 minutes					
10-20 minutes					
20-30 minutes					
30-40 minutes					
40-50 minutes					
> 50 minutes					
Others	1			Yasuda	2017

Limitations of BFR (cont'd)

- 4. Effects of chronic BFR utilization unknown
- 5. Methodology of study design

(risk of bias & conflicts of interest)

BFR Legislation & Logistics

Blood Flow Restriction Training & Scope of Practice

- APTA Positional Statement: <u>What to Know About Blood Flow Restriction Training 2018</u>³
 - "BFRT is part of the professional scope of practice for physical therapists."
- The Scope of Practice of Physical Therapy has 3 components³
 - **Professional:** the unique body of knowledge, supported by educational preparation, based on a body of evidence, and linked to existing or emerging practice frameworks
 - **Jurisdiction (legal):** is established by a state's practice act governing the specific physical therapist's license, and the rules adopted pursuant to that act
 - **Personal:** consists of activities for which an individual physical therapist is educated and trained and their competence to perform
- BFR became part of OT & PT scope of practice in 2018⁴ & CEU Credit available for³
 - OT, PT, ATC
- Licensed medical healthcare providers able to purchase medical grade pneumatic tourniquet system¹
 - Physician (MD, DO)
 - Athletic Trainers
 - Physical Therapists/Occupational Therapists
 - Chiropractors

Owens Recovery Science¹, MedBridge, APTA website³, <u>CAOperformanceandtherapy.com</u>⁴

Practical Implications – Legislation

• BFR Training Scope of Practice

• APTA: "BFRT is part of the professional scope of practice for physical therapists."

State Legislation

- 1. Check State's Practice Act
 - May be silent in regard to BFRT
- 2. Check State's Laws for Confirmation
- CAPTA Practice Act Silent on BFR & No laws prohibiting use of BFRT

Blood Flow Restriction Training & Billing

CPT Code Number	Title
97110	Therapeutic Exercise
97112	Neuromuscular Re-education
97116	Gait Training
97530	Therapeutic Activities
9140	Manual Therapy

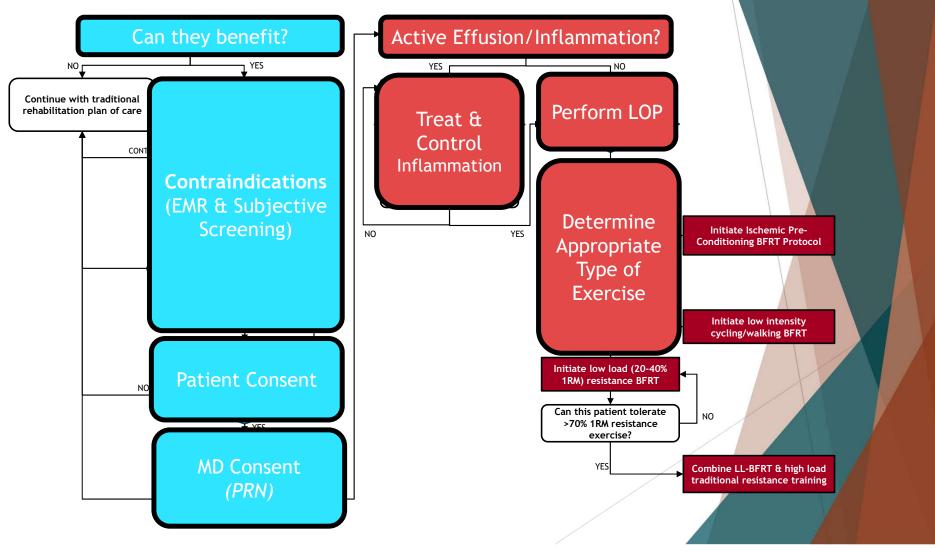
Practical Implications – Legislation & Billing

FDA Regulation

- Pneumatic Tourniquets are Class 1 FDA regulated products
- Ensure that product is registered and approved by the FDA when practicing in the United States

Billing

• Billed under the standard physical therapy codes depending on the activity that the patient is performing



Summary & Conclusion

- 1. Summary Slides
- 2. Review Objectives
- 3. Lab

Practical/Clinical Application - Exercise Specifications¹

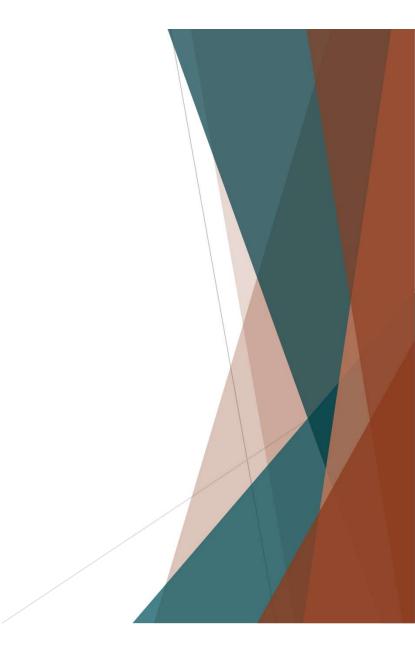
Variable	Passive Exercise	Aerobic Exercise	Resistance Exercise
Type of Exercise			
Frequency		PH	IASE 2
Exercise Intensity			
Volume	PHASE 1		
Rest ²		PF	IASE 3
Duration			
Тетро			
Scott 2014 ¹ , Heitkamp 2015 ² , Loenneke 2012 ³ , Slyzs 2016 ⁴ , Inagaki 2011 ⁵			

Objectives

The audience will be able to:

- De cribe an algorithmic decision making process to identifying appropriate
 tients for blood flow restriction training (BFRT)
- Utinze best evidence screening process to stratify patients' risk of adverse repense(s) to BFRT
- Pe form a limb occlusion pressure (LOP) using the ultrasound doppler for the opper and lower extremity
- Correction optimal occlusion and exercise parameters for BFRT
- Ve palize evidence and criterion-based clinical progression of BFRT

Objectives


The Background & Science

- 1. What is blood flow restriction training (BFR)?
- 2. How does it *actually* produce said adaptations? (*Pre-material*)
- 3. Why would I consider using BFR? AND Who can benefit from BFR?
- 4. What does the evidence say about the effectiveness of BFR? (Pre-material)
- 5. How do I safely apply BFR in the clinical setting?
 - 1. Is it *truly* safe? And for who?
 - 2. What are the risks & side effects?
 - 3. How do I know if my patient is appropriate?
- 6. Practical/Clinical Application

Questions, Comments, Feedback, Discussion...

- Colado JC, Garcia-Masso X, Triplett TN, Flandez J, Borreani S, Tella V. <u>Concurrent validation of the OMNI-resistance exercise scale</u> of perceived exertion with Thera-band resistance bands. The Journal of Strength & Conditioning Research. 2012 Nov 1;26(11):3018-24.
- Colado JC, Garcia-Masso X, Triplett NT, Calatayud J, Flandez J, Behm D, Rogers ME. <u>Construct and concurrent validation of a new</u> resistance intensity scale for exercise with thera-band® elastic bands. Journal of sports science & medicine. 2014 Dec;13(4):758.
- 3. Baechle TR, Earle RW, editors. Essentials of strength training and conditioning 3rd edition. Human kinetics; 2008.
- 4. Bamigboye AA, Smyth RM. Interventions for varicose veins and leg oedema in pregnancy. Cochrane Database of Systematic Reviews. 2007(1).
- 5. Bennett, H., & Slattery, F. (2019). <u>Effects of Blood Flow Restriction Training on Aerobic Capacity and Performance: A Systematic Review</u>. The Journal of Strength & Conditioning Research, 33(2), 572-583
- 6. Ediz L, Ceylan MF, Turktas U, Yanmis I, Hiz O. <u>A randomized controlled trial of electrostimulation effects on effussion, swelling and</u> pain recovery after anterior cruciate ligament reconstruction: a pilot study. Clinical rehabilitation. 2012 May;26(5):413-22.
- 7. Gorman WP, Davis KR, Donnelly R. <u>ABC of arterial and venous disease: Swollen lower limb–1: General assessment and deep vein thrombosis.</u> BMJ: British Medical Journal. 2000 May 27;320(7247):1453.
- 8. Haff GG, Triplett NT, editors. Essentials of strength training and conditioning 4th edition. Human kinetics; 2015 Sep 23.
- 9. Heitkamp, H. C. "<u>Training with blood flow restriction. Mechanisms, gain in strength and safety</u>." The Journal of sports medicine and physical fitness 55.5 (2015): 446-456.
- 10. Helms ER, Byrnes RK, Cooke DM, Haischer MH, Carzoli JP, Johnson TK, Cross MR, Cronin JB, Storey AG, Zourdos MC. RPE vs. <u>Percentage 1RM loading in periodized programs matched for sets and repetitions</u>. Frontiers in physiology. 2018 Mar 21;9:247.
- 11. Inagaki Y, Madarame H, Neya M, Ishii N. Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction. European journal of applied physiology. 2011 Nov 1;111(11):2715-21.
- 12. Le Cara E, Novo M, Rolnick N, Ascanio Y. Blood Flow Restriction Level 1 Manual. Smart Tools Plus. 2019.
- Lixandrao, Manoel E., et al. "Magnitude of muscle strength and mass adaptations between high-load resistance training versus lowload resistance training associated with blood-flow restriction: a systematic review and meta-analysis." Sports medicine 48.2 (2018): 361-378.
- 14. Loenneke, J. P., R. S. Thiebaud, and T. Abe. <u>"Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence</u>." Scandinavian journal of medicine & science in sports 24.6 (2014): e415-422.

- 13. Macedo CS, Alonso CS, Liporaci RF, Vieira F, Guirro RR. <u>Cold water immersion of the ankle decreases neuromuscular response of</u> <u>lower limb after inversion movement</u>. Brazilian journal of physical therapy. 2014 Feb;18(1):93-7.
- 14. Martín-Hernández, Juan, et al. "<u>Adaptation of perceptual responses to low-load blood flow restriction training</u>." Journal of strength and conditioning research 31.3 (2017): 765-772.
- Mooventhan A, Nivethitha L. Scientific evidence-based effects of hydrotherapy on various systems of the body. North American journal of medical sciences. 2014 May;6(5):199.J, ANDREACCI J. <u>Concurrent validation of the OMNI perceived exertion scale for</u> resistance exercise. Medicine & Science in Sports & Exercise. 2003 Feb 1;35(2):333-41.
- Morishita S, Tsubaki A, Takabayashi T, Fu JB. <u>Relationship between the rating of perceived exertion scale and the load intensity</u> of resistance training. Strength and conditioning journal. 2018 Apr;40(2):94-109.
- 17. Nakajima, T., Morita, T., Sato Y. "Key Considerations when conducting KAATSU training." Int. J KAATSU Training Res. 2011; 7:1-6.
- 18. Owens J, Personalized Blood Flow Restriction Rehabilitation Course Manual. Owens Recovery Science Inc. 2015.
- 19. Patterson, S. D., & Brandner, C. R. (2018). <u>The role of blood flow restriction training for applied practitioners: A questionnaire-based survey</u>. Journal of sports sciences, 36(2), 123-130.
- Robertson RJ, GOSS FL, RUTKOWSKI J, LENZ B, DIXON C, TIMMER J, FRAZEE K, DUBE J, ANDREACCI J. <u>Concurrent</u> validation of the OMNI perceived exertion scale for resistance exercise. Medicine & Science in Sports & Exercise. 2003 Feb 1;35(2):333-41.
- 21. Sari Z, Aydoğdu O, Demirbüken İ, Yurdalan SU, Polat MG<u>. A Better Way to Decrease Knee Swelling in Patients with Knee</u> Osteoarthritis: A Single-Blind Randomised Controlled Trial. Pain Research and Management. 2019;2019.
- 22. Scott, Brendan R., et al. <u>"Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular</u> <u>development</u>." Sports medicine 45.3 (2015): 313-325.

- 22. Slysz, Joshua, Jack Stultz, and Jamie F. Burr. <u>"The efficacy of blood flow restricted exercise: A systematic review & meta-analysis.</u>" Journal of science and medicine in sport 19.8 (2016): 669-675.
- 23. Su EP, Perna M, Boettner F, Mayman DJ, Gerlinger T, Barsoum W, Randolph J, Lee G. <u>A prospective, multi-center,</u> <u>randomised trial to evaluate the efficacy of a cryopneumatic device on total knee arthroplasty recovery.</u> The Journal of bone and joint surgery. British volume. 2012 Nov;94(11_Supple_A):153-6.
- 24. Tamir L, Hendel D, Neyman C, Eshkenazi AU, Ben-Zvi Y, Zomer R<u>. Sequential foot compression reduces lower limb</u> swelling and pain after total knee arthroplasty. The Journal of arthroplasty. 1999 Apr 1;14(3):333-8.
- 25. Tischer TS, Oye S, Lenz R, Kreuz P, Mittelmeier W, Bader R, Tischer T. <u>Impact of compression stockings on leg swelling</u> <u>after arthroscopy-a prospective randomised pilot study</u>. BMC musculoskeletal disorders. 2019 Dec;20(1):161.
- Wainwright TW, Burgess LC, Middleton RG. <u>Does Neuromuscular Electrical Stimulation Improve Recovery Following</u> <u>Acute Ankle Sprain? A Pilot Randomised Controlled Trial</u>. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders. 2019 May;12:1179544119849024.
- 27. Yasuda, T, Meguro M, Sato, Y, Nakajima T. "Use and safety of KAATSU training: results of national survey in 2016." Int. J KAATSU Training Res. 2017; 13:1-9.
- Zourdos MC, Klemp A, Dolan C, Quiles JM, Schau KA, Jo E, Helms E, Esgro B, Duncan S, Merino SG, Blanco R. <u>Novel</u> resistance training-specific rating of perceived exertion scale measuring repetitions in reserve. The Journal of Strength & Conditioning Research. 2016 Jan 1;30(1):267-75.

- 1. Loenneke, Jeremy P., et al. "Blood flow restriction: how does it work?." Frontiers in physiology 3 (2012): 392.
- 2. Takarada, Y., Takazawa, H., and Ishii, N. (2000a). Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. *Med. Sci. Sports Exerc.* 32, 2035–2039.
- 3. Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., and Ishii, N. (2000b). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. *J. Appl. Physiol.* 88, 2097–2106.
- 4. Yasuda, T., Brechue, W. F., Fujita, T., Shirakawa, J., Sato, Y., and Abe, T. (2009). Muscle activation during low- intensity muscle contractions with restricted blood flow. *J. Sports Sci.* 27, 479–489.
- 5. Ozaki, H., Sakamaki, M., Yasuda, T., Fujita, S., Ogasawara, R., Sugaya, M., et al. (2011). Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. *J. Gerontol. A Biol. Sci. Med. Sci.* 66, 257–263.
- 6. Schliess, F., Richter, L., Vom Dahl, S., and Haussinger, D. (2006). Cell hydration and mTOR-dependent signal-ling. *Acta Physiol. (Oxf.)* 187, 223–229.
- 7. Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiuchi, M., et al. (2010). Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. *J. Appl. Physiol.* 108, 1563–1567.
- 8. Loenneke, J. P., Fahs, C. A., Rossow, L. M., Abe, T., and Bemben, M. G. (2012a). The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. *Med. Hypotheses* 78, 151–154.
- 9. Loenneke, J. P., Wilson, J. M., Marin, P. J., Zourdos, M. C., and Bemben, M. G. (2012b). Low intensity blood flow restriction training: a meta-analysis. *Eur. J. Appl. Physiol.* 112, 1849–1859.
- 10. Fry, C. S., Glynn, E. L., Drummond, M. J., Timmerman, K. L., Fujita, S., Abe, T., et al. (2010). Blood flow restriction exercise stimulate: mTORC1 signaling and muscle protein synthesis in older men. *J. Appl. Physiol.* 108, 1199–1209.

- 11. Manini, T. M., Vincent, K. R., Leeuwenburgh, C. L., Lees, H. A., Kavazis, A. N., Borst, S. E., et al. (2011). Myogenic and proteolytic mRNA expression follow- ing blood flow restricted exercise. *Acta Physiol. (Oxf.)* 201, 255–263
- 12. Kubota, A., Sakuraba, K., Koh, S., Ogura, Y., and Tamura, Y. (2011). Blood flow restriction by low compressive force prevents disuse muscular weakness. *J. Sci. Med. Sport.* 14, 95–99.
- 13. Kubota, A., Sakuraba, K., Sawaki, K., Sumide, T., and Tamura, Y. (2008). Prevention of disuse muscular weakness by restriction of blood flow. *Med. Sci. Sports Exerc.* 40, 529–534.
- 14. Laurentino, G. C., Ugrinowitsch, C., Roschel, H., Aoki, M. S., Soares, A. G., Neves, M. Jr. et al. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. *Med. Sci. Sports Exerc.* 44, 406–412.
- 15. Abe, T., Kearns, C. F., and Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. *J. Appl. Physiol.* 100, 1460–1466.
- 16. VanWye, William R., Alyssa M. Weatherholt, and Alan E. Mikesky. <u>"Blood Flow Restriction Training: Implementation into Clinical Practice."</u> International journal of exercise science 10.5 (2017): 649.
- 17. Martín-Hernández, Juan, et al. "Adaptation of Perceptual Responses to Low-Load Blood Flow Restriction Training." Journal of strength and conditioning research 31.3 (2017): 765-772.
- 18. Kumagai, K., et al. <u>"Cardiovascular drift during low intensity exercise with leg blood flow restriction."</u> Acta Physiologica Hungarica 99.4 (2012): 392-399.
- 19. Kaufman, Kenton R., et al. "Physiological prediction of muscle forces—I. Theoretical formulation." Neuroscience 40.3 (1991): 781-792.
- 20. de Freitas, Marcelo Conrado, et al. "Role of metabolic stress for enhancing muscle adaptations: practical applications." World journal of methodology 7.2 (2017): 46.

- 21. Goldberg AL, Etlinger JD, Goldspink DF, et al. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports. 1975;7(3):185–98.
- 22. Spangenburg EE, Le Roith D, Ward CW, et al. A functional insulin-like growth factor receptor is not necessary for loadinduced skeletal muscle hypertrophy. J Physiol. 2008;586(1): 283–91. 38.
- 23. Vandenburgh H, Kaufman S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science. 1979;203(4377):265–8.
- 24. Manini TM, Clark BC. Blood flow restricted exercise and skeletal muscle health. Exerc Sports Sci Rev. 2009;37(2):78–85.
- 25. Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):1119–24.
- 26. Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc. 2013;45(1):67–74.
- 27. Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179–94.
- 28. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857–72.
- 29. Goldspink G. Cellular and molecular aspects of muscle growth, adaptation and ageing. Gerodontology. 1998;15(1):35–43.
- 30. Zou K, Meador BM, Johnson B, et al. The a7b1-integrin increases muscle hypertrophy following multiple bouts of eccentric exercise. J Appl Physiol. 2011;111(4):1134–41.
- 31. Adams GR. Invited review: autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol. 2002;93(3):1159–67.
- 32. Tatsumi R, Liu X, Pulido A, et al. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. An Physiol Cell Physiol. 2006;290(6):C1487–94.

- 33. Uchiyama S, Tsukamoto H, Yoshimura S, et al. Relationship between oxidative stress in muscle tissue and weight-liftinginduced muscle damage. Pflugers Arch. 2006;452(1):109–16.
- 34. Takarada Y, Nakamura Y, Aruga S, et al. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol. 2000;88(1):61–5.
- 35. Takarada Y, Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6): 2097–106. 7.
- 36. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308–14
- 37. Loenneke JP, Fahs CA, Rossow LM, et al. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses. 2012;78(1):151–4
- 38. Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;33(3):114–9
- 39. Schiaffino S, Dyar KA, Ciciliot S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17): 4292–314.
- 40. Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc. 2005;37(7):1144–50.
- 41. Pope ZK, Willardson JM, Schoenfeld BJ. A brief review: exercise and blood flow restriction. J Strength Cond Res. 2013;27(10):2914–26.

- 43. Pearson, Stephen John, and Syed Robiul Hussain. <u>"A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy.</u>" Sports Medicine 45.2 (2015): 187-200.
- 44. Queme, Luis F., Jessica L. Ross, and Michael P. Jankowski. "Peripheral mechanisms of ischemic myalgia." Frontiers in cellular neuroscience 11 (2017): 419.
- 45. Ehrnborg C, Rosen T. Physiological and pharmacological basis for the ergogenic effects of growth hormone in elite sports. Asian J Androl 2008; 10: 373–383
- 46. Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 2000; 88:61–65
- 47. Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc 2005; 37: 1144–1150
- 48. Takano H, Morita T, Iida H, Asada K, Kato M, Uno K, Hirose K, Matsumoto A, Takenaka K, Hirata Y, Eto F, Nagai R, Sato Y, Nakajima T. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 2005; 95: 65–73
- 49. Anderson JE, Wozniak AC. Satellite cell activation on fibers: modeling events in vivo an invited review. Can J Physiol Pharmacol 2004; 82: 300–310.
- 50. Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 1995; 269:C1371– C1378

- 51. Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 1998; 162: 401–409
- 52. Snijders, Tim, et al. "Satellite cells in human skeletal muscle plasticity." Frontiers in physiology 6 (2015): 283.
- 53. Anderson JE. A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 2000; 11:1859–1874
- 54. Kraemer, William J., and David P. Looney. <u>"Underlying mechanisms and physiology of muscular power."</u> Strength & Conditioning Journal 34.6 (2012): 13-19.
- 55. Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol 1992; 64: 552–556
- 56. Idstrom JP, Subramanian VH, Chance B, Schersten T, Bylund-Fellenius AC. Energy metabolism in relation to oxygen supply in contracting rat skeletal muscle. Fed Proc 1986; 45: 2937–2941
- 57. Katz A, Sahlin K. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta Physiol Scand 1987; 131: 119–127
- 58. Moritani T, Muro M, Nagata A. Intramuscular and surface electromyogram changes during muscle fatigue . J Appl Physiol 1986 ; 60:1179–1185
- 59. Takarada Y,Nakamura Y, Aruga S,Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 2000; 88:61–65
- 60. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 2000; 88:2097–2106
- 61. Takarada Y, Takazawa H, Ishii N. Application of vascular occlusion diminsh disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 2000; 32: 2035–2039

- 62. Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 2006; 21: 362–369
- 63. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 2007; 103: 903–910
- 64. Drummond MJ, Fujita S, Takashi A, Dreyer HC, Volpi E, Rasmussen BB. Human muscle gene expression following resistance exercise and blood flow restriction. Med Sci Sports Exerc 2008; 40: 691–698
- 65. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387: 83–90
- 66. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 1997; 94: 12457–12461
- 67. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004; 350:2682–2688
- 68. Mesires NT, Doumit ME. Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. Am J Physiol Cell Physiol 2002; 282: C899–9
- 69. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 2003; 162: 1135–1147
- 70. Grounds MD, Yablonka-Reuveni Z. Molecular and cell biology of skeletal muscle regeneration. Mol Cell Biol Hum Dis Ser 1993; 3: 210–256

- 71. Dodd S, Hain B, Judge A. Hsp70 prevents disuse muscle atrophy in senescent rats. Biogerontology 2008
- 72. Senf SM, Dodd SL, McClung JM, Judge AR. Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 2008; 22: 3836–3845
- 73. Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, Aoki J. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 2000 ; 88 : 359 363
- 74. Takarada Y, Takazawa H, Ishii N. Application of vascular occlusion diminsh disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 2000; 32: 2035–2039
- 75. Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol. 2004;54(6):585–92.
- 76. Takada S, Okita K, Suga T, et al. Low-intensity exercise canincrease muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol.2012;113(2):199–205.
- 77. Sumide T, Sakuraba K, Sawaki K, et al. Effect of resistance exercise training combined with relatively low vascular occlusion. J Sci Med Sport. 2009;12(1):107–12.
- 78. Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength Cond J. 2009;31(3):77–84.
- 79. Moore DR, Burgomaster KA, Schofield LM, et al. Neuromuscular adaptations in human muscle following low intensity resistance training with vascular occlusion. Eur J Appl Physiol. 2004;92(4–5):399–406.
- 80. Kaijser L, Sundberg CJ, Eiken O, et al. Muscle oxidative capacity and work performance after training under local leg ischemia. J Appl Physiol. 1990;69(2):785–7.

- 81. Shinohara M, Kouzaki M, Yoshihisa T, et al. Efficacy of tourniquet ischemia for strength training with low resistance. Eur JAppl Physiol Occup Physiol. 1998;77(1–2):189–91
- 82. Loenneke JP, Kearney ML, Thrower AD, et al. The acute response of practical occlusion in the knee extensors. J Strength Cond Res. 2010;24(10):2831–4.
- 83. Heitkamp, H. C. "Training with blood flow restriction. Mechanisms, gain in strength and safety." The Journal of sports medicine and physical fitness 55.5 (2015): 446-456.
- 84. Loenneke, J. P., R. S. Thiebaud, and T. Abe. "Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence." Scandinavian journal of medicine & science in sports 24.6 (2014): e415-422.
- 85. Slysz, Joshua, Jack Stultz, and Jamie F. Burr. <u>"The efficacy of blood flow restricted exercise: A systematic review & meta-analysis.</u>" Journal of science and medicine in sport 19.8 (2016): 669-675.
- 86. Loenneke, Jeremy P., et al. "Low intensity blood flow restriction training: a meta-analysis." European journal of applied physiology 112.5 (2012): 1849-1859.
- 87. Scott, Brendan R., et al. <u>"Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development</u>." Sports medicine 45.3 (2015): 313-325.
- 88. Nakajima, T., Morita, T., Sato Y. "Key Considerations when conducting KAATSU training." Int. J KAATSU Training Res. 2011; 7:1-6.
- 89. Yasuda, T, Meguro M, Sato, Y, Nakajima T. "Use and safety of KAATSU training: results of national survey in 2016." Int. J KAATSU Training Res. 2017; 13:1-9.

- 90. Loenneke JP, Fahs CA, Rossow LM, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903–12.
- 91. Cook SB, Clark BC, Ploutz-Snyder LL. Effects of exercise load and blood-flow restriction on skeletal muscle function. Med Sci Sports Exerc. 2007;39(10):1708–13.
- 92. Loenneke JP, Kim D, Fahs CA, et al. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve. Epub 2014 Sep 3. doi:10.1002/mus.24448.
- 93. Wilson JM, Lowery RP, Joy JM, et al. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res. 2013;27(11):3068–75.
- 94. Loenneke JP, Thiebaud RS, Fahs CA, et al. Effect of cuff type on arterial occlusion. Clin Physiol Funct Imaging. 2013;33(4):325–7
- 95. Loenneke JP, Thiebaud RS, Fahs CA, et al. Blood flow restriction: Effects of cuff type on fatigue and perceptual responses to resistance exercise. Acta Physiol Hung. 2014;101(2):158–66.
- 96. Kacin A, Strazar K. Frequent low-load ischemic resistanceexercise to failure enhances muscle oxygen delivery and endur-ance capacity. Scand J Med Sci Sports. 2011;21(6):e231–41.
- 97. Spranger, Marty D., et al. "Blood flow restriction training and the exercise pressor reflex: a call for concern." American Journal of Physiology-Heart and Circulatory Physiology 309.9 (2015): H1440-H1452.
- 98. Patterson, Stephen D., and Richard A. Ferguson. "Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women." European journal of applied physiology 108.5 (2010): 1025-1033.

- 99. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58:785–790, 1985
- 100. Loenneke, J. P., et al. "Potential safety issues with blood flow restriction training." Scandinavian journal of medicine & science in sports 21.4 (2011): 510-518.
- 101. Mattar, Melina Andrade, et al. <u>"Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dermatomyositis.</u>" Arthritis research & therapy 16.5 (2014): 473.
- 102. Douris, Peter C., et al. <u>"THE EFFECTS OF BLOOD FLOW RESTRICTION TRAINING ON FUNCTIONAL IMPROVEMENTS IN AN ACTIVE SINGLE SUBJECT WITH PARKINSON DISEASE.</u>" International Journal of Sports Physical Therapy 13.2 (2018).
- 103. Tennent, David J., et al. <u>"Blood flow restriction training after knee arthroscopy: a randomized controlled pilot study.</u>" Clinical Journal of Sport Medicine 27.3 (2017): 245-252.
- 104. Iida, Haruko, et al. "Effects of walking with blood flow restriction on limb venous compliance in elderly subjects." Clinical physiology and functional imaging 31.6 (2011): 472-476.
- 105. Luebbers, Paul E., Emily V. Witte, and Johnathan Q. Oshel. <u>"The Effects Of Practical Blood Flow Restriction Training On Adolescent Lower Body</u> <u>Strength.</u>" Journal of strength and conditioning research (2017).
- 106. Ozaki, Hayao, et al. "Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants." Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 66.3 (2010): 257-263.
- 107. Ozaki, Hayao, et al. <u>"Effects of 10 weeks walk training with leg blood flow reduction on carotid arterial compliance and muscle size in the elderly adults</u>." Angiology 62.1 (2011): 81-86.

- 108. Jørgensen, A. N., et al. "Blood-flow restricted resistance training in patients with sporadic inclusion body myositis: a randomized controlled trial." Scandinavian journal of rheumatology (2018): 1-10.
- 109. Libardi, C. A., et al. "Effect of concurrent training with blood flow restriction in the elderly." International journal of sports medicine (2015).
- 110. Hackney, Kyle J., et al. "Blood flow-restricted exercise in space." Extreme physiology & medicine 1.1 (2012): 12.
- 111. Pinto, Roberta R., et al. "Acute resistance exercise with blood flow restriction in elderly hypertensive women: haemodynamic, rating of perceived exertion and blood lactate." Clinical physiology and functional imaging 38.1 (2018): 17-24.
- 112. Takarada, Yudai, Haruo Takazawa, and Naokata Ishii. "<u>Applications of vascular occlusions diminish disuse atrophy of knee extensor muscles</u>." Medicine and science in sports and exercise 32.12 (2000): 2035-2039.
- 113. Iversen, Erik, Vibeke Røstad, and Arne Larmo. <u>"Intermittent blood flow restriction does not reduce atrophy following anterior cruciate ligament reconstruction</u>." Journal of Sport and Health Science 5.1 (2016): 115-118.
- 114. Ohta, Haruyasu, et al. <u>"Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction.</u>" Acta Orthopaedica Scandinavica 74.1 (2003): 62-68.
- 115. Slysz, Joshua T., and Jamie F. Burr. <u>"The effects of blood flow restricted electrostimulation on strength and hypertrophy.</u>" Journal of sport rehabilitation 27.3 (2018): 257-262.
- 116. Bittar, S. T., et al. "Effects of blood flow restriction exercises on bone metabolism: a systematic review." Clinical physiology and functional imaging (2018).

