Blood Flow Restriction Training for the Upper Extremity

Current Concepts 2024

Michael Jeanfavre PT, DPT, FAAOMPT, SCS, OCS, CSCS

1

Objectives

The Background & Science

- 1. What is blood flow restriction training (BFR)?
- 2. Why would I consider using BFR?
- 3. Who can benefit from BFR?
- 4. What does the evidence say about the effectiveness of BFR?
- 5. How does it actually produce said adaptations?
- 6. Is it truly safe? And for who?
- 7. What are the risks & side effects?
- How do I know if my patient is appropriate?
 Practical/Clinical Application

4

43

4

Introduction

Defining the problem

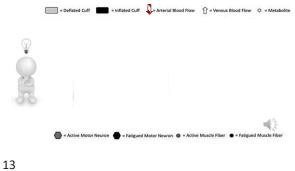
The Situation

What are the **mechanisms** by which we get patients better?

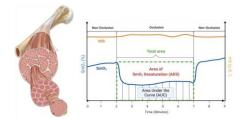
9

The Situation

Mechanotransduction & The Physical Stress Theory

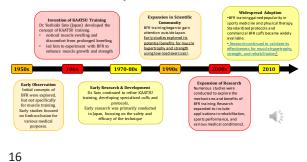

AGI	IG	INJURY	IMMOBILIZATION	YOU	TH	REHABILITATIO	ON TRAINING
т	resholds f	of Prolonged Low St for Subsequent Adap condition		Eſ	for Subs	verload" Stress Rai equent Adaptation ne condition	
Physical stress level	Increas (eg, hyj Mair	njury ed tolerance pertrophy) ntenance sed tolerance ophy)	Injury Increased tolerance (eg, hypertrophy) Maintenance Decreased tolerance (eg, atrophy)	Physical stress level	Increa (eg, h) Ma Decre	Injury sed tolerance ypertrophy) a intenance sed tolerance trophy)	Increased tolerance (eg, hypertrophy) Maintenance

10


The Problem

The Solution?

The Solution?



14

Defining Blood Flow Restriction Training

Objective #1: What is Blood Flow Restriction training (BFR)?

What is the history of BFR?

Blood Flow Restriction - Definition

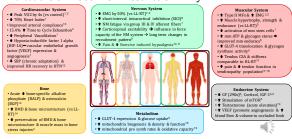
 Entails apply a tourniquet-style cuff on the proximal aspect of a limb(s)
 Cuff is tightened & pneumatically inflated to a pressure that occludes venous flow yet allows arterial inflow

VanWye 2017

18

Blood Flow Restriction – Definition

Scott 2023


Indications of Blood Flow Restriction

Objective #2: WHY would I consider using BFR? And for WHO?

4

20

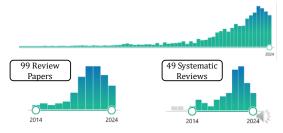
Indications of Blood Flow Restriction: Why?

Cahalin 2022; Tanaka 2018; Pope 2013; Abe 2010; Burgomaster 2003; Cantee 1986; Tanaka 2000; Morintari 1992; Centrer 2020; Jessee 2018; Song 2021; Hughes 2020", Zhao 2022", Liu 2021; Bemben 2022!; Golden 2024", Franz 2023", Cether 2021", Karanaska 2022", Kiratian 2020"

Indications of Blood Flow Restriction: Who?

 Any Gender Ages: 13+ Healthy Injured Athletic 	Bigmone while [Open passes] [Multitude 20 June 2012] Kfl = ff careford is block of the control of the DDD hundral grant o
CVD HTN	Beneficial Role of Blood Flow
 Osteoporosis 	Plar Denencial rivie of blood rive
 TII Diabetes 	A Blood Flow Restriction Resistance
 Post COVID 	
 COPD 	R Training in Tendon Rehabilitation: A
 Neurological 	Scoping Review on Intervention
Diseases	Parameters, Physiological Effects,
 Cognitive 	FI Farameters, Filysiological Lifects,
Decline	Strengthening the Brain—Is Resistance Training with Blood Flow
 Kidney Disease 	Restriction an Effective Strategy for Cognitive Improvement
COPD	55 G
 Tendinopathy 	by Alexander Törpel 1.* 🖂 😳, Fabian Herold 2 🤨, Dennis Hamacher 1 🥝, Notger G. Müller 2.3.4 and
	Lutz Schega ¹

24


Effectiveness of Blood Flow Restriction

Objective #3 : What does the evidence say about the effectiveness of BFR?

K

46

Evidence on Blood Flow Restriction Training

Evidence on Blood Flow Restriction Training

48

Effectiveness of Blood Flow Restriction

Objective #3 : What does the evidence say about the effectiveness of BFR?

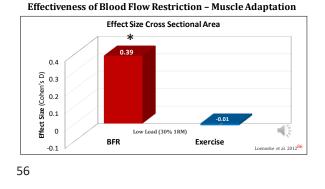
Literature Reviews

Seminal Studies

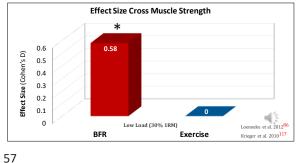
50

Effectiveness of BFR – Muscle Adaptation

Low intensity blood flow restriction training	ng: a meta-analysis
Jeremy P. Loenneke · Jacob M. Wilson · Pedro J. Marín · Michael C. Zourdos · Michael G. Bemben	Loenneke et al. 2012
Population: Healthy (untrained individuals, recreation)	onally active, athletes)
• Study Count: 11 studies (study design not specified)	


Cited 91 Times in 10 years

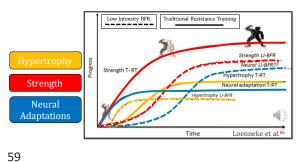
Only lower extremity BFR studies included

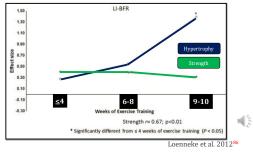

Methods: Systematic Review and Meta-analysis

Outcomes: Muscle Strength Gain & Muscle Hypertrophy

1

Effectiveness of Blood Flow Restriction - Muscle Adaptation




Effectiveness of BFR - Muscle Adaptation

Effectiveness of BFR & Adaptation Timing

Effectiveness of BFR & Adaptation Timing

60

Effectiveness of BFR - Musculoskeletal Rehab

 Outcomes: Muscle Strength Gain & Muscle Hypertrophy, Pain, Physical Function

Effectiveness of BFR - Musculoskeletal Rehab

d meta-analysis			Hugh	es 20	17			Muscl	e Stre	engtl	h
Study name	Hedges'g	SE	Variance	ш	UL.	z	Р	He	dges'g and 95	% CI	
Shimizu et al., 2016	0.269	0.312	0.098	-0.344	0.881	0.860	0.390		-		
Patterson & Ferguson, 2011	0.366	0.578	0.334	-0.767	1,499	0.633	0.527			-	
Ozaki et al., 2011	1.133	0.442	0.195	0.267	1.998	2.565	0.010			•	
Ozaki et al., 2011b	1.986	0.599	0.359	0.812	3.159	3.316	0.001			-	-
Yasuda et al., 2015	0.253	0.463	0.215	-0.655	1.162	0.547	0.584		-	-	
Segal et al., 2015	0.221	0.311	0.097	-0.389	0.832	0.711	0.477		_		
Segal et al., 2015b	0.105	0.307	0.095	-0.497	0.708	0.342	0.732		-		
Ohta et al., 2003	0.995	0.317	0.101	0.373	1.617	3.134	0.002		-	- 1	
Total	0.523	0.133	0.018	0.263	0.784	3,939	0.000				

63

Effectiveness of BFR – Musculoskeletal Rehab

and meta-analysis		-	Hughe	es 201	7				Muscl	. 511	engu	
Study name	Hedges'g	SE	Variance	ш	UL	z	Р		н	edges'g a	nd 95% CI	
ibardi et al., 2015	0.370	0.456	0.208	-0.523	1.264	0.812	0.417	L		-+•	- 1	
Thiebaud et al., 2013 /echin et al., 2015	0.181	0.507	0.257	-0.813 -0.623	1.175	0.358	0.721 0.515			-	_	
emandes-Bryk et al., 2016	1.045	0.358	0.128	0.343	1.747	2.918	0.004			-		
Carabulut et al., 2013 Total	1.023	0.408	0.167	0.223	1.824	2.506	0.012					

64

Effectiveness of BFR - Musculoskeletal Rehab

Blood flow restriction training in clinical
musculoskeletal rehabilitation: a systematic review
and meta-analysis Hughes 2017

Conclusions: LL-BFR in a MSK rehabilitation setting & clinical population: • Is effective at attenuating strength loss & facilitating strength in clinical populations suffering from musculoskeletal (MSK) injuries

- Can
 muscle size & strength adaptations, may act as a surrogate for heavyload strength rehabilitation training in a broad range of clinical populations
 Is safe when proper screening, individualized pressures, & graded exposure
- program is applied

Effectiveness of BFR - Musculoskeletal Rehab

Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis Hughes 2017

Conclusions: LL-BFR in a MSK rehabilitation setting & clinical population: Offers added physiological adaptations (beyond the muscle):

- · Stimulation of mTORC1 signalling in muscle protein synthesis in older adults - Blood serum \clubsuit Bone alkaline phosphatase (BAP) & \clubsuit bone turnover \clubsuit \clubsuit bone health
- Tarotid arterial compliance, peak oxygen uptake, peak post-occlusive blood flow, & vascular endothelial function, & peripheral nerve circulation (via walking with BFR)

66

Effectiveness of BFR - Musculoskeletal Rehab

Blood flow restriction training i	
musculoskeletal rehabilitation:	a systematic review
and meta-analysis	Hughes 2017

Clinical Recommendations:

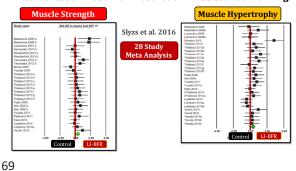
- Systematic Progression:
 - (1a) BFR alone during periods of bed rest • (1b) BFR with PROM (± NMES)

 - (2) BFR + with low-workload walking exercise • (3) BFR combined with low-load resistance exercise
- (4) LL-BFR training in combination with high-load exercise Proper screening (to risk stratify patients)

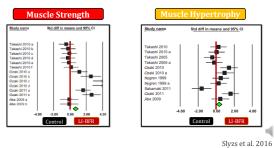
 Individualized pressures & training parameters Longer duration studies (>6 weeks)

67

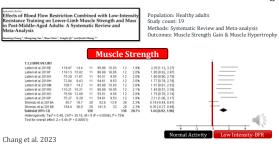
Effectiveness of Blood Flow Restriction - Resistance Training


Joshua Slysz, Jack Stultz, Jamie F. Burr*	Slyzs	2016
The efficacy of blood flow restricted exercise: A system meta-analysis	atic rev	iew 8
Review		

- Population: Healthy adults
- Study Count: 47 studies (RCTs & Non-RCTs)
- · Study Genders: 27 Male, 7 Female, 14 Both
- Subjects: Healthy Adults (>400 subjects, Age: 34)
- · Meta-Analysis: 28 studies (19 did not meet MA criteria)
- Methods: Systematic Review and Meta-analysis
- Outcomes: Muscle Strength Gain & Muscle Hypertrophy

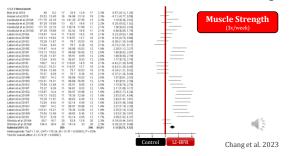


Effectiveness of Blood Flow Restriction - Resistance Training


Effectiveness of Blood Flow Restriction - Aerobic Training

70

Effectiveness of Blood Flow Restriction - Resistance Training

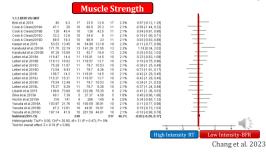


Effectiveness of Blood Flow Restriction - Resistance Training

									Muscle Hypertrophy
		BFRt			ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean		Total			Total	Weight		IV. Fixed, 95% Cl
Cook & Cleary2019A	48.9	13.2	10	47.7	11.7	11	8.6%	0.09 [-0.76, 0.95]	
Cook & Cleary2019B	22.1	6.2	10	23.5	7.1	11	8.5%	-0.20 [-1.06, 0.66]	
Harper et al.2019	0.49	4.58	16	0.92	5.22	19	14.2%	-0.09 [-0.75, 0.58]	
Libardi et al.2015	59.09	12.68	10	59.4	13.79	8	7.3%	-0.02 [-0.95, 0.91]	
Vechin et al.2015A	71.4	22.1	8	61.1	14.8	8	6.3%	0.52 [-0.48, 1.52]	
Vechin et al.2015B	71.4	22.1	8	52.7	15.7	7	5.4%	0.91 [-0.18, 1.99]	
Yasuda et al.2014A	49.1	9.6	8	44.7	8.9	8	6.3%	0.45 [-0.55, 1.45]	
Yasuda et al.2014B	24.2	8.4	8	20.8	3.6	8	6.3%	0.50 [-0.50, 1.50]	
Yasuda et al.2014C	22.1	4.8	8	20.8	3.6	8	6.5%	0.29 [-0.70, 1.28]	
Yasuda et al.2014D	40.8	7	8	36.5	7.7	8	6.2%	0.55 [-0.45, 1.56]	
Yasuda et al.2016A	4.19	5.81	10	3.88	6.12	10	8.2%	0.05 [-0.83, 0.93]	
Yasuda et al.2016B	41.27	7.04	10	40.14	7.17	10	8.2%	0.15 [-0.73, 1.03]	
Yasuda et al.2016C	41.27	7.04	10	43.59	5.91	10	8.0%	-0.34 [-1.23, 0.54]	
Total (95% CI)			124			126	100.0%	0.16 [-0.09, 0.41]	•
Heterogeneity: Chi2 = 6	5.40. df =	12 (P =	0.89):	$l^2 = 0\%$					
Test for overall effect:									Control Low Intensity-BFR
									Chang et al. 2023

72

Effectiveness of Blood Flow Restriction - Resistance Training

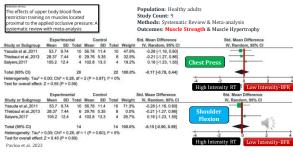


73

Shema Lations 10			BFRt		с	ontrol			std. Mean Difference	Std. Mean Difference
Latoro Tir/T S210 Tir/T	or Subgroup		SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Lightion P129 P109 P129 P109 P129	FRt VS Normal a	ctivity								
20160 114.4 11 2017 15 12 16 2017 14.4 1 2017 13 15 2017 14.4 10 <td>ulut et al.2010C</td> <td>171.75</td> <td>22.19</td> <td>13</td> <td>138.74</td> <td>17,99</td> <td>11</td> <td>2.1%</td> <td>1.56 [0.63, 2.50]</td> <td></td>	ulut et al.2010C	171.75	22.19	13	138.74	17,99	11	2.1%	1.56 [0.63, 2.50]	
2018 111,11 110,21 117,25 12,00 12 16,40	ulut et al.2010D	97.29	15.08	13	82.42	16.9	11	2.1%	0.90 [0.05, 1.75]	
20190 752.20 11.07 11 48.07 12.08 24.41 47.301 20191 72.64 49.31 12.44 45.71 12.98 22.414 47.301 20191 10.97 44.2 11.081 15.21 19.88 22.014 13.034 45.01 20191 10.97 44.2 11.081 15.21 19.88 22.014 13.034 45.01 20191 75.27 12.01 10.01 12.01 12.01 12.01 12.01 12.01 <td>et al.2018Q</td> <td>119.47</td> <td>14.4</td> <td>11</td> <td>80.07</td> <td>10.96</td> <td>12</td> <td>1.8%</td> <td>2.99 [1.73, 4.24]</td> <td></td>	et al.2018Q	119.47	14.4	11	80.07	10.96	12	1.8%	2.99 [1.73, 4.24]	
20101 72.04 9.43 11 23.14 4.56 12 19 23.16 13.16	et al.2018R	118.13	15.02	11	78.35	12.09	12	1.8%	2.83 [1.61, 4.04]	
20190 1092 14.2 11 8007 10.66 12 19% 2272 113 238 11 71.8 71.9<	et al.2018S	75.29	11.67	11	49.83	6.45	12	1.8%	2.64 [1.47, 3.81]	
2010V 110.21 117 173.5 12.00 12 194. 22.55 116.3.38 2010V 75.64 12.4 14.85 64.75 12 194. 23.51 16.3.38 2010V 75.64 14.85 64.75 12 194. 23.51 16.3.38 2010V 75.27 9.23 11.01.14 45.12 1.94. 23.51 16.3.38 20104 10.23 11.4 4.54 12 1.94. 23.75 11.61.27 1.97. 20.91.12.24 1.94.7 1.99.1 1.99.1 1.99.1 1.99.1 1.99.1 1.99.1 1.99.2 1.99.1 1.99.1 1.99.1 1.99.1 1.99.1 1.99.2 1.99.1 <	et al.2018T	72.04	9.43	11	52.14	4.55	12	1.8%	2.63 [1.46, 3.80]	
2019W 77.54 12.44 11 44.05 6.46 12 19% 25.25 13.36 1 2019W 7.27 20.34 12 1.47 4.07 12.47 1 1.47 10.47 10% 22.57 13.36 1 1.44 1.47 10% 22.57 13.36 1.47 1.09 2.07 10.34 1.47 10% 20.91 1.41 1.47 10% 2.07 10.34 1.46 1.47 10% 2.07 1.03 1.46 1.47 10% 2.07 1.03 1.46 1.47 10% 2.07 1.04 1.46 1.07 1.06 2.07 1.01 <td>et al.2018U</td> <td>109.7</td> <td>14.2</td> <td>11</td> <td>80.07</td> <td>10.96</td> <td>12</td> <td>1.9%</td> <td>2.27 11.18, 3.35</td> <td></td>	et al.2018U	109.7	14.2	11	80.07	10.96	12	1.9%	2.27 11.18, 3.35	
20105 7527 9.29 11 9.214 4.66 12 178 3.091 12.437 - 0164 0.17 9.5 7.28 3.65 1.48 19.127 3.69 1.43 2.20 4.47 1.99 8.091 11.87 1.092 3.61 1.41 9.20 4.47 1.99 8.091 1.11 1.092 3.61 1.41 9.20 4.47 1.99 8.091 1.11 1.01 <	et al. 2018V	110.21	15.21	11	78.35	12.09	12	1.9%	2.25 [1.16, 3.33]	
0149 40.7 7.29 5 27.8 3 26 5 1.44 139 12/2.269 20159 216 14 2 203 64 7 19% 80 26134 569 20140 46 27 8 63 24 0 20% 814 5427,108 20140 40 10 0 1132 41 51 10 27% 464 51 25,447,109 20140 10 10 0 1 132 41 51 10 27% 464 51 25,447,649 20140 2014 2019 21 21 21 21 21 21 21 21 21 21 21 21 21	et al.2018W	75.54	12.49	11	49.83	6.45	12	1.9%	2.53 [1.38, 3.67]	
20158 316 141 8 202 14 7 10% 0.001211160 20158 2014 16 9 20% 11.437.108 10% 20158 2014 16 9 20% 11.437.108 10% 20150 11.937 21.79 16 12.357.118 10 21% -4.649.356.042 20164 17.217.10 16.122.557.118 10 21% -4.649.356.042 20167 17.217.10 16.121.156.056.10 21% -4.649.356.042 -4.649.356.042 20167 11.97.12 11.97.1556.056.10 21% -4.649.356.042 -4.649.356.042 2017 11.97.14 11.97.1556.056.10 21% -4.649.356.042 -4.649.356.042	et al. 2018X	75.27	9.29	11	52.14	4.55	12	1.7%	3.09 [1.82, 4.37]	
2014A 46 27 8 32 4 0 2014 1116	t al.2015B	40.1	7.39	5	27.83	3.58	5	1.4%	1.91 [0.27, 3.65]	
20148 191 60 8 196 44 8 2014 0.5916/26,160 20101 10327 173 10 1235 40451125,040 20106 10327 10 1235 10 1255 40451125,040 20106 472 12.01 10 12.01 40.9142,040 40.9142,040 20107 171 41.91 12.015,050 10 11.91 40.9142,040 5% CDp 77 176 32.645 1.548 (D.86,2.50) 50.95 1.548 (D.86,2.50) 717 176 32.645 1.548 (D.86,2.50) 40.95 1.548 (D.86,2.50)	et al. 2015B	316	141	8	203	84	7	1.9%	0.90 (-0.18, 1.98)	
2.011€0 101 00 00 108 44 0 20% 0.2	a et al. 2014A	66	27	8	63	24	8	2.0%	0.11 (-0.87, 1.09)	
42016E 472 12.01 10 51.20 11.5 10 2.1% -0.33[-12], 0.56] 42016F 107.4 41.9 10 2.151 50.56 10 2.1% -0.39[-120, 0.56] 5% C0 17.14 41.9 10 2.151 50.56 10 2.1% -0.39[-120, 0.56] 5% C0 17.14 41.9 10 2.15 50.50 (0.15) 7.15 50.50	a et al. 2014B	191	60	8	158	44	8	2.0%	0.59 (-0.42, 1.60)	
A2018 47.2 (2.6) 10 51.26 (115 10 2.1% -0.33 (121,0.56) (2.1016 137.14 41.9 10 2.161 50.56 10 2.1% -0.39 (1.20,0.56) 5% C0 173 176 32.26% 1.48 [0.86,2.10] (1% Tau ² = 1.30, Ch ² = 92.37, d ² = 1.6 (0 ² = 0.0001); t ² = 33%.	a et al. 2016D	103.97	21.76	10	112.35	11.91	10	2.1%	-0.46 (-1.35, 0.43)	
H.2016F 197.14 41.9 10 216.1 50.56 10 2.1% -0.30[-1.28, 0.50] 5% C0 177 32.6% 1.48 [0.86, 2.10] thy Tau ² =1.38; Ch ² =92.37, dr = 16 (P < 0.0001); P = 93%	a et al.2016E	47.2	12.61	10	51.28	11.15	10	2.1%	-0.33 (-1.21, 0.66)	
ithy: Tau#= 1.38; Ch#= 92.37, df = 16 (P < 0.00001); #= 83%	a et al.2016F	197.14	41.9		216.1	50.56		2.1%	-0.39 (-1.28, 0.50)	
	al (95% CI)			173			176	32.6%	1.48 [0.86, 2.10]	•
	geneity: Tau ^a = 1	.38; ChP=	92.37.	df = 16	(P < 0.0	0001); P	= 83%			

Effectiveness of Blood Flow Restriction – Resistance Training

Effectiveness of Blood Flow Restriction - Resistance Training


75

Effectiveness of Blood Flow Restriction

The effects of upper restriction training of proximal to the app systematic review w	on musi lied occ	cles lo clusive	cated press				5		dults eview & Meta-analysis <mark>ength</mark> & Muscle Hypertrophy
	Expe	riment	tal	c	ontrol		24	Std. Mean Difference	Std. Mean Difference
study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
/asuda et al.,2010	62	4.8	5	57.5	17	5	26.2%	0.33 [-0.93, 1.58]	
'amanaka et al.,2012	137.9	17.1	16	119.8	16.2	16	73.8%	1.06 [0.31, 1.81]	Chest Press
otal (95% CI)			21			21	100.0%	0.87 [0.23, 1.51]	
leterogeneity: Tau ^a = 0. est for overall effect: Z	= 2.65 (8	P = 0.0	(80						Low Intensity RT Low Intensity-BFF
		perime			Contr			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	1 50) Tota	al Mea	in SD	Tota	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Bowman et al.,2020	15.7			4 6.9	7 5.1	10	50.4%	1.10 [0.22, 1.98]	
Lambert et al.,2021	12.8	3 0.4	4 1	6 11.	9 0.4	16	49.6%	2.19 [1.29, 3.09]	Shoulder Flexion
Total (95% CI)			3	0		26	100.0%	1.64 [0.57, 2.71]	
Heterogeneity: Tau ^a	= 0.39; 0	hi*=2	2.89, df	f = 1 (P	= 0.05); ² = {	15%	+	
Test for overall effect	: Z = 3.0	1 (P =	0.003))				-4	Low Intensity RT Low Intensity-BFR
Pavlou et al. 2023									

76

Effectiveness of Blood Flow Restriction

Effectiveness of Blood Flow Restriction

The effects of upper body blood flow restriction training on muscles located proximal to the applied occlusive pressure: systematic review with meta-analysis

Population: Healthy adults Study Count: 9 Methods: Systematic Review & Meta-analysis Outcomes: Muscle Strength & Muscle Hypertrophy

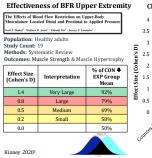
- No difference between LL-RT \pm BFR was observed in pectoralis major muscle size, thickness, or girth in 3 studies implementing only chest press exercise
- Proximal muscle size adaptations may be plausibly driven by the total time under occlusion, a minimum volume threshold, the training period, or a systemic effect (rather than the specific exercise performed)
- Note: sensitivity of the muscle size measurement method may have played a role in the findings of our review.
- A significant effect of LL-BFRT was observed only in shoulder lean mass compared to LL-RT measured by DEXA in contrast to studies implementing muscle size/thickness measurements using US or tape measure measure Pavlou et al. 2023

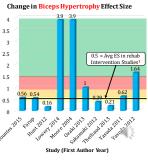
78

Effectiveness of Blood Flow Restriction - Resistance Training

The effects of upper body blood flow restriction training on muscles located proximal to the applied occlusive pressure: A ystematic review with meta-analysis

Population: Healthy adults Study Count: 9 Methods: Systematic Review & Meta-analysis Outcomes: Muscle Strength & Muscle Hypertrophy Results: LL-PRT significantly & bench press shoulder flexion strength compared to LL-RT.

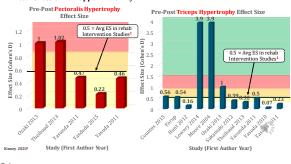

Risk of Bias

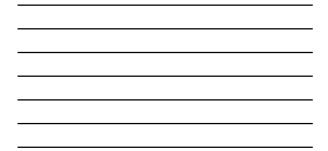

Articles	Brumit 2020	Bowman 2020	Lambert 2021	Yasudo 2011	Yasuda 2010	Yamanaka 2012	Thiebaud 2013	Green 2020	Saylers 2017
PEDro Score	High Risk	Low Risk	High Risk	High Risk	High Risk	High Risk	High Risk	High Risk	High Risk
GRADE (Quality of Evidence)	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low	Very Low

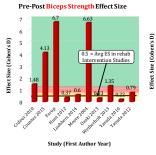
48


Pavlou 2023

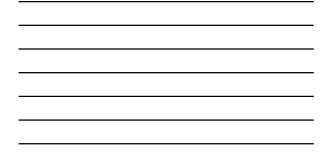
79





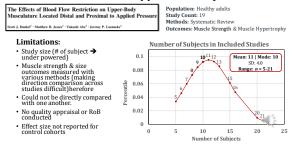

Effectiveness of BFR Upper Extremity


81


Effectiveness of BFR Upper Extremity

82

Pre-Post Bench Press 1RM Effect Size



The Effects of Blood Flow Restriction on Upper-Body Musculature Located Distal and Proximal to Applied Pro-Scott J. Daskel¹ · Matthew B. Jessel¹ · Takashi Abe² · Jermy P. Lonneke²

Population: Healthy adults Study Count: 19 Methods: Systematic Review Outcomes: Muscle Strength & Muscle Hypertrophy

Conclusions:

- LL-BFR in the upper body (UB) produces similar muscle adaptation to high load resistance training
- The positive physiological adaptations of LL-BFR in the UB appear to occur with relatively low loads (20-30% 1 RM) & [low] pressures

84

Key Summary Points & Take Aways

Practical Implications

So What?!

- Low load BFR with proper screening is safe & effective for a variety of clinical populations and particularly individuals rehabbing from musculoskeletal injuries^{1.6}
- Individuals with non-communicable diseases (i.e., DMII³, CVD², Neurodegenerative⁴, CKD⁶, COPD⁵, etc.), with proper precautions, may also *benefit* from LL-BFR regimens.
- Incremental graded exposure & systematic progression of BFR, with individualized LOP, exercise prescription, and of sufficient duration (>4 weeks) & frequency will assist with optimizing physiological adaptations.¹

017¹, Angelopoulos 2023², Saatmann 2021³, Vinolo-Gil 20223⁴, Kohlbrenner 2023⁵, Corréa 2021⁶, Bemben 2022⁷, Franz 2023⁹, Cetner 2021⁹, Cahalin 2022¹⁰, Liu 2021¹¹

85

So What?!

43

Key Summary Points & Take Aways

Practical Implications

- Low load BFR on the upper extremity improves muscle strength, muscle hypertrophy, and pain reduction than is low load resistance training^{1,3-5}
- Positive muscle performance improvements in the proximal muscle groups is dependent upon:
 - · LOP Pressure & duration of occlusion
 - Training volume threshold (i.e., proximity to muscle failure) 1.4
 - Duration (>6 weeks) and frequency (3x/wk > 2x/week) 1.5
 - Methods of measurement (i.e., DEXA > circumference measurement)⁴

Bowman 2020¹, Dankel 2016, Fan 2023³, Pavlou 2023⁴, Chang 2023⁵,

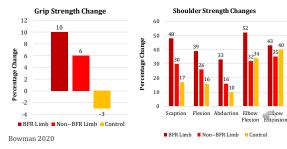
Effectiveness of Blood Flow Restriction

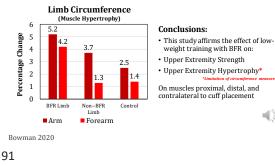
Objective #3 : What does the evidence say about the effectiveness of BFR?
Literature Reviews
Seminal Studies

88

4

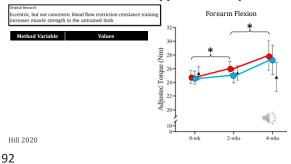
Effectiveness of BFR Upper Extremity

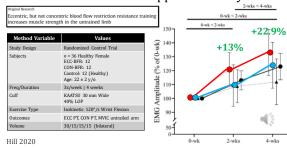

Method Variable Values

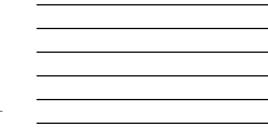

Bowman 2020

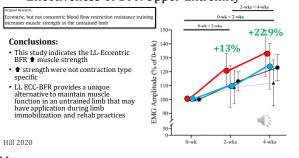
89

Effectiveness of BFR Upper Extremity

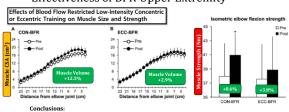



4

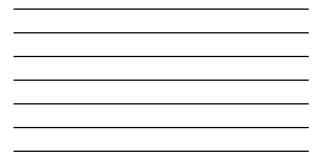

Effectiveness of BFR Upper Extremity



Effectiveness of BFR Upper Extremity



Effectiveness of BFR Upper Extremity


Methods	Values	1.6
Study Design	Randomized Control Trial	14 -O- ECC-BFR ## ##
Subjects	n = 10 Healthy Male 1 UE ECC-BFR: 10 1 UE CON-BFR: 10 Age: 22 ± 2 y/o	
Freq/Duration	3x/week 6 weeks	
Cuff	KAATSU 30 mm Wide 100 mmHg (≇10 mmHg/session → 160 mmHg)	04 Concentric Mean EMG: +81 ⁴ 02
Exercise Type	Bicep curls 30% 1 RM (based CON setrength)	0.0 5 10 15 20 25 30 35 40 45 50 50 60 65 70
Outcomes	EMG during exercise Biceps CSA (MRI) Isometric Elbow Flexion 1 RM (HHD)	Set 1 Set 2 Set 3 Set 4
Volume	30/15/15/15 (bilateral)	Eccentric Elbow Flexion ECC/GON ²

95

Effectiveness of BFR Upper Extremity

Yasuda 2012

	cey Keefer Hutchison, Dan Kang, Stephen Gerard D. Alterado, c Nguyen, Carsten Neumiller, Robert Reynoso, Jacob Stickell		ry Keefer Hutchison, Dan Kang, Zach Klemmer, Mike Stroue neng, Neil Patrick Cayanan, and Sheldon Shishido
Variable	Values	Variable	Values
Study Design	Randomized Control Trial	Study Design	Randomized Control Trial
Subjects	n = 35 Healthy (29 F 6 M) BFR vs Control Age: 25 ± 1.6 y/o	Subjects	n = 46 Healthy (29 F 6 M) BFR vs Control Age: 25 ± 2.2 y/o
Freq/Duration	2x/week 8 weeks	Freq/Duration	2x/week 8 weeks
Cuff	80% LOP (ORS Delphi Medical Unit)	Cuff	50% LOP (ORS Delphi Medical Unit)
Exercise Prescription	Lower Body: 30/15/15/15 (2-1-2) 30% 1RM • Knee EXT & Knee FLX ankle weight	Exercise Prescription	BFR: 30/15/15/15 (2-1-2) 30% 1RM • Sidelying ER
	Upper Body: 3x15 (Tempo 2-1-2) 30% 1RM • Scaption & Sidelying ER Note. BFR only applied to lower body exercises	Outcomes	Muscle strength (HHD) Muscle CSA (US)
Outcomes	Muscle strength (HHD) Muscle CSA (US)		10 A

4 stord

97

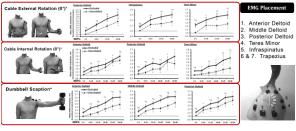
Effectiveness of BFR Upper Extremity

- lower extremities & rotator cuff strength
 There was NO between group differences in strength
- Neither group increased CSA of rectus femoris
- Limitations:
- No BFR for upper extremity
- No exercise intensity progression
- Brummit 2021, Brummit 2020

98

Limitations:

Single exercise for rotator cuff (targeting muscles proximal to the cuff)


Effectiveness of BFR Upper Extremity

		11	5
	Flow Restriction Training Shoulder Lambert 2021	Exercises	EMG Placement
Variable	Values	Cable External Rotation (0")*	1. Anterior Deltoid
Study Design	Randomized Control Trial	- da da	2. Middle Deltoid
Subjects	n = 32 Healthy (9 F 23 M) BFR vs Control Age: 25 ± 1.6 y/o	Dumbbell Scaption"	 Posterior Deltoid Teres Minor Infraspinatus
Freq/Duration	2x/week 8 weeks	and the second sec	6 & 7. Trapezius
Cuff	50% LOP (ORS Delphi Medical Unit)	le re	
Exercise Prescription	30/15/15/Fatigue (2-1-2) 20% 1RM Isometric • If >75 reps achieved on 2 bouts → +1 lb	Cable Internal Rotation (0")*	
Outcomes	Lean Mass (DEXA) Isometric Rotator Cuff Strength (HHD) • Abduction, Scaption, IR & ER @0° & @90° Muscle Endurance (No BFR & BFR) • Standing ER & IR to fatigue, Abduction Muscle EMG	Side Lying Dumbbell External Rotation	

Effectiveness of BFR Upper Extremity Blood Flow Restriction Training for the Shoulder Lambert 2021

on (0°) Cable E

100

Blood Flow Restriction Training for the Shoulder Lambert 2021 Shoulder Internal Rotation Muscle Performance Lean Mass via DEXA 400 50% 350 BFR DNoBFR 3a se 50% E 40% ge Change f 30% 20% 10% -17 IR Max Isometric Strength IR Strength Endurance (Occluded) IR Strength Endurance (Unoccluded) -50 Upper Extremity Shoulder Region BFR No BFR

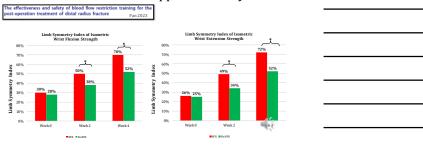
Effectiveness of BFR Upper Extremity

Effectiveness of BFR Upper Extremity

Blood Flow Restriction	Training
for the Shoulder	Lambert 2021

Conclusions:

- Use of BFR during LL exercise
 whole arm & shoulder muscle mass
- strength endurance & maximums isometric strength
- Responses observed in the shoulder muscle mass as a whole were due to EMG
- The results provide support for future research on the utility of BFR for rehab in non-operative & operative rotator cuff injuries


Variable	Values
Study Design	Randomized Control Trial
Subjects	n = 35 Post Op Distal Radius Fracture (9 F 23 M) BFR: n = 17 (7 M 10 F; 44 ± 15 y/o) NoBFR: n = 18 (10 M 8 F; 47 ± 14 y/o)
Freq/Duration	5x/week 4 weeks
Cuff	120 mmHg (B Strong®)
Exercise Prescription	4 Week Post Operative Protocol Strength: 30/15/15/15 (20% 1RM) - grip, pinch, isometric wrist ext & flex AROM: shoulder and elbow PROM: wrist & forearm (<4/10 VAS, <50% FROM)
Outcomes	Wrist Function (Cooney modification) Pain Wrist & Forearm Circumference ROM: Fix, Ext, Rad Dev, Ulin Dev, Pron, Supination Strength: Crip, Pinch, Wrist Flexion & Extension D-Dimer Levels Radius Union Scoring System (RUSS)

104

105

Effectiveness of BFR Upper Extremity

Effectiveness of BFR Upper Extremity

809 70%

Variable	Values	
Study Design	Randomized Control Trial	
Subjects	n = 35 Post Op Distal Radius Fracture (9 F 23 M) BFR: n = 17 (7 M 10 F; 44 ± 15 y/o) NoBFR: n = 18 (10 M 8 F; 47 ± 14 y/o)	
Freq/Duration	5x/week 4 weeks	
Cuff	120 mmHg (B Strong©)	
Exercise Prescription	4 Week Post Operative Protocol Strength: 30/15/15/15 (20% 1RM) - grip, pinch, isometric wrist ext & flex AROM: shoulder and elbow PROM: wrist & forearm (<4/10 VAS, <50% FROM)	
Outcomes	Wrist Function (Cooney modification) Pain Wrist & Forearm Circumference ROM: Fix, Ext, Rad Dev, Ulin Dev, Pron, Supination Strength: circ), Pinch, Wrist Flexion & Extension D-Dimer Levels Radius Union Scoring System (RUSS)	

107

Conclusions:

- BFR therapy can significantly ↓ pain, muscle strength, and ↑ function.
- BFR therapy did NOT significantly improve passive ROM
- Further research is needed to determine its ability to ↓ swelling.
- BFR therapy is safe & effective for DRF patients after ORIF
- Requires individualized protocols and frequent assessments.

Effectiveness of BFR Upper Extremity

BFR Training I Outcomes, Str Casting for Co	mproves Patients' Reported ength, and Range of Motion After Iles' Fracture Yang 2023		
Variable	Values	Conclusions:	
Study Design	Randomized Control Trial	• Individualized BFR therapy can	
Subjects	n = 28 during plaster cast treatment (9 F 23 M) BFR: n = 17 (7 M 10 F; 44 ± 15 y/o) NoBFR: n = 18 (10 M 8 F: 47 ± 14 y/o)	 individualized BFR dierapy can significantly subjective rating of wrist 	
Freq/Duration Cuff	2x/week 6 weeks 50% LOP (ATS 400TS®) 46 cm wideth	function (PRWE) •	
Exercise Prescription	6 Week Post Operative Protocol Strength: 30/15/15/15 (35% 1RM) • If >75 reps on two sessions → ↑ 1lb 9 Exercises (AROM. ARAROM. Strength)	 • wrist range of motion (ulnar deviation) 	
Outcomes	9 Exercises (AROM, AAROM, Strength) Patient Rated Wrist Evaluation (PRWE) Wrist Range of Motion Strength: Grip, Pinch, Muscle Stiffness	BFR therapy is safe & effecti for patients s/p Colles' Fractu	

108

So What?!

KEY POINTS

Key Summary Points & Take Aways

Practical Implications

- Low load BFR on the upper extremity improves muscle strength, muscle hypertrophy, and pain reduction than is low load resistance training 1,3,6
- Particular emphasis on eccentric muscle contraction (if resistance is normalized to ECC 1 RM)⁶ aspect of the exercise may help to enhance the strengthening & muscle performance of the contralateral limb³
- (1) volume (fatigue sets), (2) multiple exercises (≥4), (3) ★ EMG activity seem to be important prescription variables in order to induce proximal muscle hypertrophy, strength, and endurance (work capacity) during UE LL-BFR.⁷
- LL-BFR is not only safe & effective, but offers significantly & pain, * muscle strength, and * function in the acute post operative phases of upper extremity rehabilitation (compared to traditional a protocol)⁷⁻⁹

Bowman 2020¹, Hill 2020, Fan 2023³, Pavlou 2023⁴, Chang 2023⁵, Yasuda 2012⁶, Lambert 2022⁷, Fan 2023⁸, Yang 2023⁹

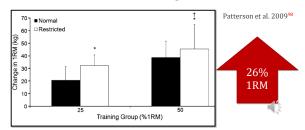
Effectiveness of Blood Flow Restriction

Objective #3 : What does the evidence say about the effectiveness of BFR?

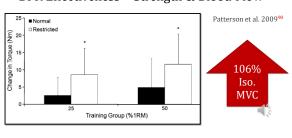
- Literature Reviews
- Seminal Studies
- What lessons can we learn from lower extremity BFR studies?

BFR Effectiveness - Strength & Blood Flow

- Subjects: n = 16 (Female)
 Exercise: Unilateral Plantar Flexion
- Intensity Cohorts: 25% or 50% 1 RM (1 LE BFR, 1 LE no BFR)
- Duration: 4 weeks, 3x/week, 5-8 min/set
- Volume: 3 sets to failure (cadence 1.5 sec ↑ & 1.5 sec ↓)

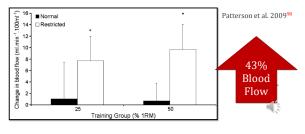

Outcomes:

- Isokinetic Dynamometer
- Strength: 1 RM
- Isometric MVC
 Torque @: 0.52, 1.05, 2.09 rad/sec
- Blood flow: pre and post (ml/min/100 ml)

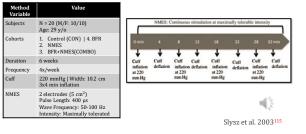


4

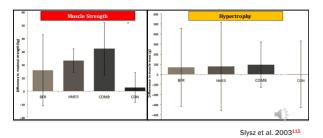
111


BFR Effectiveness - Strength & Blood Flow

BFR Effectiveness - Strength & Blood Flow


113

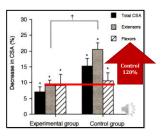
BFR Effectiveness – Strength & Blood Flow



Effectiveness of BFR - Post-Operative: BFR+NMES

Effectiveness of BFR - Post-Operative: BFR+NMES

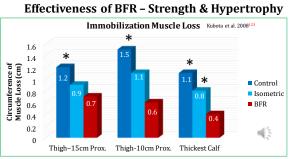
116

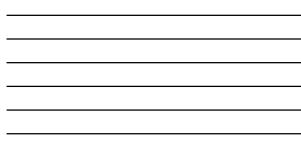

Muscle Preservation

L

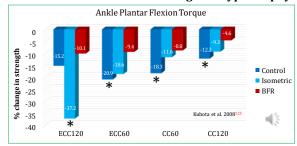
121

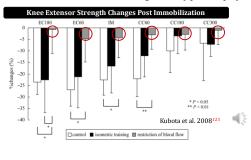
Effectiveness of BFR – Post-Operative: ACL

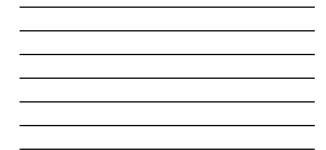

Method Variable	Value			
Subjects	N = 16 (8 BFR; 8 Controls) M/F: 8/8 Age: 23 y/o			
Duration	2 weeks (Day 3-14 post op)			
Cuff	BFR: Width: 90 mm Pressure: 180 mmHg (+10/D) Max Avg: 238 mmHg (210-260) CONTROL: Cuff w/o inflation			
Exercise Type	NONE			
Frequency	2x/Day			
Volume	5x5 min Set Rests: 3 min			
Takarada et al. 2000 ¹¹²				


Effectiveness of BFR: Strength & Hypertrophy

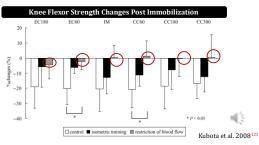
Variable	Methods	ala
Subjects	n = 15 M, Healthy Control: n = 5 Isometric Group: n = 5 No Exercise BFR: n = 5 (200 mmHg)	
Duration	2 weeks	AT TA
Frequency	Isometric Grp: 2x/day BFR: 5x5 min (3 min rest) 2x/D - (occlusion NO EXERCISE)	lab cob
Туре	ALL subjects Immobilized Lankle (casted & crutches) - Isometric Grp: Knee EXT/FLX & Ankle PF	
Volume/ Intensity	 BFR: 200 mmHg, 77 mm wide Isometric Grp: 1x20x5 sec Contraction 	
		Kubota et al. 2008 ¹²³


123


124



Effectiveness of BFR - Strength & Hypertrophy



Effectiveness of BFR - Strength & Hypertrophy

Effectiveness of BFR - Strength & Hypertrophy

126

4

Clinical Application of UE BFR from LE Evidence

- Effect of Ischemic Preconditioning (IPC) with immobilization (&/or PROM):
 Preservation of muscle mass, tendon CSA & stiffness, & bone mineral density
 - Metabolic conditioning (i.e., blood flow & work capacity of the limb via peripheral adaptations of mitochondrial density & function)

 - pain via cannabinoid mechanisms
 vascularity & volumetric blood flow
- Upper extremity ergometer application with BFR (± high intensity RT)
- Upper Extremity BFR with NMES
- Early Rehab Multifactorial BFR Program

 - BFR on the lower extremity
 Application of Upper Extremity IPC
 - Contralateral LL ECC BFR
 - Implementation of UE LL-BFR as soon as applicable

https://andreasphysioblog.com/wpcontent/uploads/2022/10/Rolnick2021-Perceived-Barriers-to-Blood-Flow-Restriction-Training.pdf

182

Objectives

The Background & Science

- 1. What is blood flow restriction training (BFR)?
- 2. Why would I consider using BFR?
- 3. Who can benefit from BFR?
- 4. What does the evidence say about the effectiveness of BFR?
- 5. How does it *actually* produce said adaptations?
- 6. Is it truly safe? And for who?
- 7. What are the risks & side effects?
- How do I know if my patient is appropriate?
 Practical/Clinical Application

K

238

Questions, Comments, Feedback, Discussion...

- Loenneke, Jeremy P., et al. "Blood flow restriction: how does it work?." Frontiers in physiology 3 (2012): 392. 1. 2. Takarada, Y., Takazawa, H., and Ishii, N. (2000a). Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles Med. Sci. Sports Exerc. 32, 2035-2039.
- 3. Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., and Ishii, N. (2000b). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J. Appl. Physiol. 88, 2097–2106.
- 4
- Yasuda, T., Brechue, W. F., Fujita, T., Shirakawa, J., Sato, Y., and Abe, T. (2009). Muscle activation during low- intensity muscle contractions with restricted blood flow. J. Sports Sci. 27, 479–489.
- 5. Ozaki, H., Sakamaki, M., Yasuda, T., Fujita, S., Ogasawara, R., Sugaya, M., et al. (2011). Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. J. Gerontol. A Biol. Sci. Med. Sci. 66, 257–263.
- Schliess, F. Richter, L., Vom Dahl, S., and Haussinger, D. (2006). Cell hydration and mTOR-dependent signal-ling. Acta Physiol. (Oxf.) 187, 223–229. 6.
- 7. Suga, T., Okita, K., Morita, N., Yokota, T., Hirabayashi, K., Horiuchi, M., et al. (2010). Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J. Appl. Physiol. 108, 1563–1567.
- 100m-ministry resistance elertra with most now restriction. J. App. Physics. 106, 1505–1507.
 Lonenkels, J.F. Arka, C. A. Rossov, L. M. Abe, T. and Benben M. G. (2012a) The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. *Med Appothess* 78, 151–154.
 Leenneke, J.F. Wilson, J.M., Marin, P.J. Zourdos, M. C., and Benben, M. G. (2012b). Low intensity blood flow restriction training: a meta-analysis En. *PLoPP. 1080–1357*.
- 9.
- Fry, C. S., Glynn, E. L., Drummond, M. J., Timmerman, K. L., Fujita, S., Abe, T., et al. (2010). Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J. Appl. Physiol. 108, 1199–1209.

240

References

- Manini, T. M., Vincent, K. R., Leeuwenburgh, C. L., Lees, H. A., Kavazis, A. N., Borst, S. E., et al. (2011). Myogenic and proteolytic mRNA expression follow- ing blood flow restricted exercise. Acta Physiol. (Daf.) 201, 255–263 11.
- Kubota, A., Sakuraba, K., Koh, S., Ogura, Y., and Tamura, Y. (2011). Blood flow restriction by low compressive force prevents disuse muscular weakness. J. Sci. Med. Sport. 14, 95–99. 12.
- Kubota, A., Sakuraba, K., Sawaki, K., Sumide, T., and Tamura, Y. (2008). Prevention of disuse muscular weakness by restriction of blood flow. Med. Sci. Sports Ever. 40, 529–534.
- Laurentino, G. C., Ugrinowitsch, C., Roschel, H., Aoki, M. S., Soares, A. G., Neves, M. Jr. et al. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. *Med. Sci. Sports Everc.* 44, 406–412.
- 15. Abe, T., Kearns, C. F., and Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J. Appl. Physiol. 100, 1460–1466.
- VanWye, William R, Alyssa M. Weatherholt, and Alan E. Mikesky. "Blood Flow Restriction Training. Implementation. into Clinical Practice." International journal of exercise science 10.5 (2017): 649.
- Martin-Hernández, Juan, et al. "<u>Mapation of Perceptual Responses to Low-Load Blood Flow Restriction Training</u>" Journal of strength and conditioning research 31.3 (2017): 765-772.
- Kumagai, K, et al. <u>"Cardiovascular drift during low intensity exercise with legblood flow restriction.</u>" Acta Physiologica Hungarica 99.4 (2012): 392-399.
- Kaufman, Kenton R, et al. "Physiological prediction of muscle forces—J. Theoretical formulation." Neuroscience 40.3 (1991): 781-792.
- 20. de Freitas, Marcelo Conrado, et al.<u>"Role of metabolic stress for enhancing muscle adaptations: practical applications</u>." World journal of methodology 7.2 (2017): 46. 48

241

References

- Goldberg AL, Etlinger JD, Goldspink DF, et al. Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports. 1975;7(3):185-98. 22. Spangenburg EE, Le Rolth D, Ward CW, et al. A functional insulin-like growth factor receptor is not necessary for loadinduced skeletal muscle hypertrophy. J Physiol. 2009;586(1): 283–91. 38.
- Vandenburgh H, Kaufman S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science. 1979;203(4377):265-8. 23.
- Manini TM, Clark BC. Blood flow restricted exercise and skeletal muscle health. Exerc Sports Sci Rev. 2009;37(2):78-85. 24
- Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):119-24. 25. Cook SB, Murphy BG, Labarbera KE. Neuromuscular function after a bout of low-load blood flow-restricted exercise. Med Sci Sports Exerc. 2012;45(1):67-74. 26.
- Schonfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179-94. 27.
- 2013/3/0/11/17-79. Schonfeld BJ: The mechanisms of muscle bypertrophy and their application to resistance training. [Strength Gond Res. 2010;24(10):2857-72. Goldspink G. Cellular and molecular aspects of muscle growth, adaptation and ageing. Gerodontology. 1998;15(1):35-43. Zou K. Medori BM, Jahnson R, et al. The a7b-1-integrin increases muscle hypertrophy following multiple boots of eccentric exercise. J Appl Physical 2011;11(1):0114-014. 29. 30. rcise. J Appl Physiol
- Adams GR. Invited review: autocrine/paracrine IGF-I and skeletal muscle adaptation. [Appl Physiol. 2002;93(3):1159-67.
- Tatsumi R, Liu X, Pulido A, et al. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. An Psysiol Cell Physiol. 2006;29(6):C1487-94. 32.

- Uchiyama S, Tsukamoto H, Yoshimura S, et al. Relationship between oxidative stress in muscle tissue and weight-liftinginduced muscle damage. Pflugers Arch. 2006;452(1):109–16. 33.
- Takarada Y, Nakamura Y, Aruga S, et al. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion | Appl Physiol. 2000;88(1):61-5. 34.
- Takarada ¼ Takazawa H, Sato Y, et al. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6): 2097–106. 7. 35.
- Takarada Y, Salo Y, Ishin N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;96(4):308–14 36.
- Loenneke JP, Fahs CA, Rossow LM, et al. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses. 2012/78(1):151-4 37.
- Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev. 2005;32(3):114-9 38.
- Schiaffino S, Dyar KA, Giciliot S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17): 4292-314.
 Kawada S, Ishihi N, Skeletal muscle hypertrophy after chronic restriction of venus blood flow in rats. Med Sci Sports Exerc. 2005;37(7):1144–50.
- Pope ZK, Willardson JM, Schoenfeld BJ. A brief review: exercise and blood flow restriction. J Strength Cond Res. 2013;27(10):2914–26.

43

243

References

- 43. Pearson, Stephen John, and Syed Robiul Hussain. "A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertraphy." Sports Medicine 45.2 (2015): 187-200.
- Queme, Luis F, Jessica L. Ross, and Michael P. Jankowski, "Peripheral mechanisms of ischemic myalgia," Frontiers in cellular neuroscience 11 (2017): 419. 44.
- Ehrnborg C, Rosen T. Physiological and pharmacological basis for the ergogenic effects of growth hormone in elite sports. Asian J Androl 2008; 10:373-383
- Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 2000; 88:61–65 47. Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc 2005; 37: 1144–1150
- Annum A. Antras. Manuska Hyperturppy and creations in the state of 48.
- Anderson JE, Wozniak AC. Satellite cell activation on fibers: modeling events in vivo an invited review. Can J Physiol Pharmacol 2004; 82: 300-310. 49.
- Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 1995; 269:C1371- C1378 50.

4

244

References

- Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 1998; 162: 401-409 51.
- 52.
- Snijders, Tim, et al. "Satellite cells in human skeletal muscle plasticity." Frontiers in physiology 6 (2015): 283. Anderson JE. A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 2000; 11:1859-1874 53.
- Kraemer, William J., and David P. Looney. "<u>Underlying mechanisms and physiology of muscular power</u>" Strength & Conditioning Journal 34.6 (2012): 13-19. 54. Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol 1992; 64: 552–556 55.
- Idstrom JP, Subramanian VH, Chance B, Schersten T, Bylund-Fellenius AC. Energy metabolism in relation to oxygen supply in contracting rat skeletal muscle. Fed Proc 1986, 45: 2937-2941 56.
- Katz A, Sahlin K Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta Physiol Scand 1987; 131: 119–127
- Anima T, Wao N, Kata A, Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol 1966; 60:1179-1185 Takarada Vakamura Y, Araga SOnda T, Miyzaka S, khii N, Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occision. J Appl Physiol. 2000; 8861-65 58 59.
- Takezarada Y, Takezarava H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 2000; 88:2097–2106
- and a matching functional functions. J Appl Physics 2000; 102:2077-2106
 Taberally Traditional functintervecode functions. J Appl Physics 2000; 102:2077-2106
 Tabe

- 62. Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 2006; 21: 362-369 63.
- 64.
- Fight S, Ale T, Drammond MJ, Gadrasa JG, Dreyer HC, Sao Y, Volju E, Barmusson BL. Blood flow restriction during low-intensity resistance caretic linearate. 50(4) phasphopylation and muscle purches hypothesis. J Appl Physiol 2007; 103: 005-101 Drammond MJ, Paigle S, Takaba A, Dreyer JC, Volju E, Barmusson BL. Huann muscle gene expression following resistance esercise and blood flow restriction. Med Sci Querts Emer 2006; 40: 661–661. 65.
- McPherron AC, Lee SJ, Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 1997; 94: 12457-12461 Schueller, W. Wagner KR, Shitz LJ, Hubner C, Ribed T, Komen W, Braun T, Tobin JF, Lee SJ. Myostatin mutation associated with gross muscle hypertrophy in a child Li. N Eng J Med 2004; 350:2687-2684. 66. 67.
- Mesires NT, Doumit ME. Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. Am J Physiol Cell Physiol 2002; 282: C699-9 68.
- McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 2003; 162: 1135–1147
- 70. Grounds MD, Yablonka-Reuveni Z. Molecular and cell biology of skeletal muscle regeneration. Mol Cell Biol Hum Dis Ser 1993; 3: 210-256

43

246

References

- Dodd S, Hain B, Judge A. Hsp70 prevents disuse muscle atrophy in senescent rats. Biogerontology 2008 71.
- 72. Senf SM, Dodd SL, McClung JM, Judge AR. Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy: FASEB J 2008; 22: 3836–3845 73.
- mana.muquip: rotato j. 2009; at: 3808-3893 Naito H, Powers SX, Denirell HA, Sugiun T, Dodd SL, Aoki J. Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 2000; 88: 359 363 Takaraka JY, Takazawa H, khii N. Application of vascular occlusion diminsh disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 2000; 32: 2015-2019 74.
- 75. Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol. 2004;54(6):585-92.
- Takada S, Okita K, Suga T, et al. Low-intensity exercise canincrease muscle mass and strength proportionally to enhancedmetabolic stress under ischemic conditions. J Appl Physiol.2012;113(2):199-205. 76.
- Sumide T, Sakuraba K, Sawaki K, et al. Effect of resistanceexercise training combined with relatively low vascular occlusion. J Sci Med Sport. 2009;12(1):107-12 77.
- Lorence P, Byoh T, The use of acclusion training to produce muscle hypertrophy. Strength Goid J. 2009;1(2):77–84.
 Moreo PR, Burgemater VK, Scholfeld JM, et al. Neuromaccular adaptations in human muscle following low intensity resistance training with varatilar excision. Eur JApp Physical 2009;2(2):579–406.
- Kaijser I, Sundberg CJ, Eiken O, et al. Muscle oxidative capacity and work performance after training under local leg ischemia. J Appl Physiol. 1990;69(2):785-7. 80.
- 4

247

References

- Shinohara M, Kouzaki M, Yoshihisa T, et al. Efficacy of tourniquet ischemia for strength training with low resistance. Eur JAppl Physiol Occup Physiol. 1998;77(1-2):189-91 81.
- Loenneke JP, Kearney ML, Thrower AD, et al. The acute response of practical occlusion in the knee extensors. J Strength Cond Res. 2010;24(10):2811-6. 82.
- od flow restriction. Mechanisms, gain in strength and safety." The Journal of sports medicine and physical 83.
- Heitkamp, H. C. "Training with bl fitness 55.5 (2015): 446-456.
- 84. Loenneke, J. P., R. S. Thiebaud, and T. Abe. "Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence." Scandinavian journal of medicine & science in sports 24.6 (2014): e415-422. 85. Slysz, Joshua, Jack Stultz, and Jamie F. Burr. "The efficacy of blood flow restricted exercise: A systematic review & meta-analysis." Journal of science and medicine in sport 19.8 (2016): 669-675.
- Loenneke, Jeremy P., et al. "Low intensity blood flow restriction training: a meta-analysis." European journal of applied physiology 112.5 (2012): 1849-1859.
- Scott, Brendan R., et al. <u>"Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development</u>, medicine 45.3 (2015): 313-325.
- Nakajima, T., Morita, T., Sato Y. "Key Considerations when conducting KAATSU training." Int. J KAATSU Training Res. 2011; 7:1-6. Yasuda, T, Meguro M, Sato, Y, Nakajima T. "Use and safety of KAATSU training: results of national survey in 2016." Int J KAATSU Training Res. 2017: 13:1-9 89.

- Loenneke JP, Fahs CA, Rossow LM, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol.2012;112(8):2903-12. 90.
- Cook SB, Clark BC, Ploutz-Snyder LL. Effects of exercise load and blood-flow restriction on skeletal muscle function. Med Sci Sports Exerc. 2007;39(10):1708-13. 91.
- Loenneke JP, Kim D, Fahs CA, et al. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation Muscle Nerve. Epub 2014 Sep 3. doi:10.1002/mus.24448. 92.
- 93. Wilson JM, Loweyy RP, Joy JM, et al. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res. 2013;27(11):3068-75.
- Lemenke JP, Thielman JK, Faha CA, et al. Effect of cell type on arterial occlusion. Clin Physiol Funct Imaging. 2013;33(4):255-7 Lonenke JP, Thielman JK, Faha CA, et al. Blood flow restriction. Effects of culf type on fatigue and perceptual responses to resistance exercise. Acta Physiol Imaging. 2013;101(10):130-50 95.
- 96.
- Spranger, Marty D., et al. "Blood flow restriction training and the exercise pressor reflex: a call for concern." American Journal of Physiology-Heart and Circulatory Physiology 309.9 (2015): H1440-H1452.
- Patterson, Stephen D., and Richard A. Ferguson. "Increase in calf post-occlusive blood flow and strength following short-term resistance exercise training with blood flow restriction in young women." European journal of applied physiology 108.5 (2010): 1025-1033. 98.

249

References

- MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58:785–790, 1005
- Loenneke, J. P., et al. "Potential safety issues with blood flow restriction training." Scandinavian journal of medicine & science in sports 21.4 (2011): 510-518.
- Mattar, Melina Andrade, et al. "Safety and possible effects of low-intensity resistance training associated with partial blood flow restriction in polymyositis and dematomyositis." Arthritis research & therapy 16.5 (2014): 473.
- Douris, Peter C, et al. <u>THE EFFECTS OF BLOOD FLOW RESTRICTION TRAINING ON PUNCTIONAL IMPROVEMENTS IN AN ACTIVE SINGLE SUBJECT WITH PARKINSON DISEASE</u>_International Journal of Sports Physical Therapy 13.2 (2018).
- Tennent, David J., et al. <u>"Blood flow restriction training after knee arthroscopy: a randomized controlled pilot study.</u>" (Inical Journal of Sport Medicine 27.3 (2017): 245-252.
- Iida, Haruko, et al. "Effects of walking with blood flow restriction on limb venous compliance in elderly subjects." Clinical physiology and functional imaging 31.6 (2011): 472-476.
- Luebbers, Paul E, Emily V. Witte, and Johnsthan Q. Oshel. <u>The Effects Of Fractical Blood Flow Restriction Training On Adolescent Lower Rody</u> <u>Strength</u>. Journal of strength and conditioning research (2017).
- 106. Ozaki, Hayao, et al. "Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants." Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 66.3 (2010): 257-263.
- Ozaki, Hayao, et al. "Effects of 10 weeks walk training with leg blood flow reduction on carotid arterial compliance and muscle size in the elderly adults." Angiology 62.1 (2011): 81-86.

4

250

References

- Jørgensen, A. N., et al. "Blood-flow restricted resistance training in patients with sporadic inclusion hody. Scandinavian journal of rheumatology (2018): 1-10.
- Libardi, C. A. et al. "Effect of concurrent training with blood flow restriction in the elderly." International journal of sports medicine (2015).
 Hackney, Kyle J., et al. "Effect of concurrent training with blood flow restriction in the elderly." International journal of sports medicine (2015).
 Hackney, Kyle J., et al. "Effect of concurrent training with blood flow restriction in the elderly." International journal of sports medicine (2015).
- Pinto, Roberta R., et al. "Acute resistance exercise with blood flow restriction in clderly hypertensive women: haemodynamic, rating of perceived exercise and blood lactate" Clinical physiology and functional imaging 38.1 (2018): 17-24.
- Takarada, Yudai, Haruo Takazawa, and Naokata Ishii. "<u>Applications of vascular or</u> Medicine and science in sports and exercise 32.12 (2000): 2035-2039. ans diminish disuse atrophy of knee extensor muscles."
- Iversen, Erik, Vibeke Røstad, and Arne Larmo. "Intermittent: blood flow restriction does not reduce atrophy following anterior. cruciate ligament reconstruction," Journal of Sport and Health Science 5.1 (2016): 115-118.
- 114. Obta, Haruyasu, et al. "Low-load resistance muscular training with moderate restriction of blood flow after anterior, cruciate ligament zeconstruction." Acta Orthopaedica Scandinavica 74.1 (2003): 62-68.
- Slysz, Joshua T., and Jamie F. Burr. "The effects of blood flow restricted electrostimulation on strength and hypertrophy." Journal of sport rehabilitation 27.3 (2018): 257-262.
- Bittar, S. T., et al. "Effects: of blood flow restriction exercises: on bone metabolism: a systematic review," Clinical physiology and functional imaging (2018).