Mechanism of Blood Flow Restriction

Mechanisms of BFR – Hypertrophy: Primary Factors

Mechanical Tension

- Leads to hypertrophy via:
- Mechanotrasduction^{27, 29, 30} ↑ localized hormone production³¹

Muscle damage³²

ROS production^{32, 33}

Metabolic Stress

- Leads to hypertrophy via: ↑ systemic hormone production³⁴ ↑ fast-twitch fiber recruitment^{35, 36}
 - Cell swelling ³⁷
 - Muscle damage^{27, 38} ↑production of ROS^{27, 39-41}
- ↑ fast twitch fiber recruitment²⁴⁻²⁶

Mechanical Tension + Metabolic Stress = Muscle Hypertrophy

s li

Mechanisms of BFR – Hypertrophy: Muscle Damage

- Available evidence does NOT support the hypothesis that BFR in combination with low-intensity exercise Λ incidence of muscle damage. 84
- Evidence suggests minimal to NO muscle damage is occurring with this type of exercise.⁸⁴
- Supporting Factors:
- 1. no prolonged
- 2. decrements in muscle function 3. no prolonged muscle swelling
- 4. muscle soreness ratings similar to a submaximal low load control 5. no elevation in blood biomarkers of muscle damage.84

Insulin Like Growth Factor 1 (IGF-1)

 unclear if IGF-1 activity is directly ↑ in response to Interface and the second state of the second state o

- intensity of the exercise). it is postulate that IGF-1 may NOT be necessary for
- muscle hypertrophy when other factors such as:

- Myostatin
 Heat Shock Protein 72 (HSP-72)
 Nitric oxide synthase-1 (NOS-1)

are changed in favor of muscle growth. 47

Mechanisms of BFR – Hypertrophy: Metabolic Stress

- · Nitric oxide synthase: enzyme responsible for converting L-arginine into nitric oxide (NO)
- · Nitric Oxide: electrically neutral molecule capable
- Neuronal NOS (nNOS): found in the transmembrane / dystrophin protein complex of skeletal muscle.⁵¹
- <u>@Rest</u>: nNOS → produces → low levels of NO →
- maintain satellite cell quiescence During exercise-induced contraction: mechanical
- shear forces &/or \uparrow in intracellular Ca²⁺ concentrations \rightarrow nNOS activation⁵⁰
- Occlusion + Exercise: ↑ Ca2+ ions &/or reperfusion⁴⁷ → ↑nNOS activation

Mechanism of BFR – Fiber Recruitment

- Subjects: Males 25-40 y.o.
- Exercise: Bicep Curls
- Intensity: 40% & 80% 1 RM
- Occlusion: 0, 50, 100 mmHg
- Type of Occlusion: Pneumatic
- Cuff: 90 mm W, 700 L
- Integrated electromyography (IEMG) demonstrating NO difference in IEMG activity between low intensity occlusion VS high Intensity non-occlusion
- training suggesting that a greater number of FT fibers are activated at low intensities⁵⁹⁻⁶¹

Mechanism of BFR – Regulators of Growth (mTOR)

- ↑ rates of protein synthesis → skeletal muscle hypertrophy response⁶²
- mammalian target of rapamycin (mTOR) pathway regulates numerous components involved in:
- 1. protein synthesis (initiation & elongation factors)
- 2. biogenesis of ribosomes themselves⁶³

 S6K1 Phosphorylation - a critical regulator of exercise-induced muscle protein synthesis & product of mTOR Pathway⁶²⁻⁶³

 has been demonstrated to 1 3x immediately post exercise with occlusion training, and remained elevated relative to control at 3 hours post exercise.⁶³

Mechanism of BFR – Regulators of Growth (mTOR)

mammalian target of rapamycin (mTOR) pathway

- REDD1 (regulated in development and DNA damage responses) which is normally expressed in states of hypoxia, is NOT ↑ in response to occlusion training
- REDD1 → ↓ protein synthesis through inhibition of the mTOR, responsible for the regulation of translation initiation⁶³
- NO ↑ REDD1 → ↑(mTOR) pathway

Mechanism of BFR - Regulators of Growth (Myostatin) Myostatin: a myokine, a protein produced & released by myocytes that acts on muscle cells' autocrine function to inhibit myogenesis mutations of this gene result in overgrowth of musculature in mice, cattle, and humans⁶⁵ Inhibit satellite cell proliferation^{67,69} Myostatin is expressed in adult satellite cells → regulates satellite cell quiescence & self-renewal, showing it does play a role in adult myogenesis.⁶⁹ [Mechanical Overloading] OR [Low Intensity Exercise + BFR]40 ↓ Muscle Myostatin gene expression BFR → favorable hypertrophic changes in Myostatin as a result of hypoxia &/or the metabolic sub-products.

Mechanism of BFR – Regulators of Growth (HSP)

Heat Shock Proteins (HSPs) - induced by stressors such as heat, ischemia, hypoxia, free radicals

HSP Purpose: 1. chaperones to prevent misfolding or aggregation of proteins. 2. useful to slowing atrophy.⁴⁰ as HSP-72 plays a protective role in preventing protein degradation during periods of reduced contractile activity.⁷³ by inhibiting key atrophy signaling pathways^{71,72}

- primary pathway involved in mediating protein degradation is the **ubiquitin proteasome** pathway

Mechanism of BFR – Regulators of Growth (HSP)

Mechanisms of Blood Flow Restriction: Absence Exercise

BFR - Exercises =

- Takarada et al. (2000a)²
- BFR (238 mmHg, 9 cm wide cuff) to patients post ACLR $\rightarrow \psi$ post operation disuse atrophy (measured by MRI) of the knee extensors
- Kubota et al. (2008)¹³
- BFR (200 mmHg, 7.7 cm wide cuff) to a cast immobilized limb → attenuates ↓ muscle size (measured by leg_circumference) & muscle strength.
- Kubota et al. (2011)⁷¹
- lower pressure of 50 mmHg → ↓ muscular weakness induced by chronic unloading (BUT NO EFFECT on attenuating changes in leg size)

Mechanisms of Blood Flow Restriction

BFR – Exercises =

- acute $\boldsymbol{\uparrow}$ in real-time ultrasound measured muscle thickness
- changes were maintained following the removal of the cuff → acute changes in muscle thickness were actual acute ↑ in muscle size (i.e., muscle swelling) and NOT attributed to venous pooling
- Fry 2010¹⁰
- observed greater acute Λ in muscle size (measured by circumference) with BFR resistance exercise vs resistance exercise alone
- Abe 2006¹⁰, Ozaki 2011⁵: swelling may also help explain the ↑ in muscle size & strength previously observed from slow walking + BFR

Mechanisms of Blood Flow Restriction

BFR - Exercises =

- BFR $\rightarrow \uparrow$ H₂0 $\land \rightarrow$ \checkmark stimulation of mTOR pathway.
- Swelling Hypothesis: dependent on research completed on hepatocytes⁸
 unknown how well this mechanism may translate over to human skeletal muscle.
- Future cellular research should attempt to determine whether or not muscle swelling plays a significant role in the muscle hypertrophic signaling response in humans, which would have important clinical implications for populations contraindicated to exercise